Dynamic O-GlcNAcylation governs long-range chromatin interactions in V(D)J recombination during early B-cell development

LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood 2008;112:1570–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125:S3–23.

Article  PubMed  PubMed Central  Google Scholar 

Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017;17:281–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020;160:233–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248:1517–23.

Article  CAS  PubMed  Google Scholar 

Schatz DG, Ji Y. Recombination centers and the orchestration of V(D)J recombination. Nat Rev Immunol. 2011;11:251–63.

Article  CAS  PubMed  Google Scholar 

Seidman JG, Leder A, Edgell MH, Polsky F, Tilghman SM, Tiemeier DC, et al. Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. Proc Natl Acad Sci USA. 1978;75:3881–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roldán E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol. 2005;6:31–41.

Article  PubMed  Google Scholar 

Sayegh CE, Jhunjhunwala S, Riblet R, Murre C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 2005;19:322–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 2004;18:411–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebert A, McManus S, Tagoh H, Medvedovic J, Salvagiotto G, Novatchkova M, et al. The distal V(H) gene cluster of the Igh locus contains distinct regulatory elements with Pax5 transcription factor-dependent activity in pro-B cells. Immunity 2011;34:175–87.

Article  CAS  PubMed  Google Scholar 

Li Y, Haarhuis J, Sedeño Cacciatore Á, Oldenkamp R, van Ruiten MS, Willems L, et al. The structural basis for cohesin-CTCF-anchored loops. Nature 2020;578:472–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill L, Jaritz M, Tagoh H, Schindler K, Kostanova-Poliakova D, Sun Q, et al. Enhancers of the PAIR4 regulatory module promote distal V(H) gene recombination at the Igh locus. EMBO J. 2023;42:e112741.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losada A. Cohesin regulation: fashionable ways to wear a ring. Chromosoma 2007;116:321–9.

Article  CAS  PubMed  Google Scholar 

Degner SC, Verma-Gaur J, Wong TP, Bossen C, Iverson GM, Torkamani A, et al. CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proc Natl Acad Sci USA. 2011;108:9566–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Schmidt-Supprian M, Shi Y, Hobeika E, Barteneva N, Jumaa H, et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 2007;21:1179–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259:3308–17.

Article  CAS  PubMed  Google Scholar 

Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007;446:1017–22.

Article  CAS  PubMed  Google Scholar 

Tarbet HJ, Toleman CA, Boyce M. A sweet embrace: control of protein‒protein interactions by O-linked β-N-acetylglucosamine. Biochemistry 2018;57:13–21.

Article  CAS  PubMed  Google Scholar 

Latorre P, Varona L, Burgos C, Carrodeguas JA, López-Buesa P. O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α. PLoS ONE. 2017;12:e0179988.

Article  PubMed  PubMed Central  Google Scholar 

Myers SA, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, et al. SOX2 O-GlcNAcylation alters its protein‒protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. eLife 2016;5:e10647.

Article  PubMed  PubMed Central  Google Scholar 

Yang WH, Park SY, Nam HW, Kim DH, Kang JG, Kang ES, et al. NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA. 2008;105:17345–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ozcan S, Andrali SS, Cantrell JE. Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta. 2010;1799:353–64.

Article  PubMed  PubMed Central  Google Scholar 

Gao Y, Miyazaki J, Hart GW. The transcription factor PDX-1 is posttranslationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys. 2003;415:155–63.

Article  CAS  PubMed  Google Scholar 

Balana AT, Mukherjee A, Nagpal H, Moon SP, Fierz B, Vasquez KM, et al. Box 1 (HMGB1) alters its DNA binding and DNA damage processing activities. J Am Chem Soc. 2021;143:16030–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin WC, Desiderio S. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science. 1993;260:953–9.

Article  CAS  PubMed  Google Scholar 

Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008;133:265–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnston CM, Wood AL, Bolland DJ, Corcoran AE. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J Immunol. 2006;176:4221–34.

Article  CAS  PubMed  Google Scholar 

Lin SG, Ba Z, Du Z, Zhang Y, Hu J, Alt FW. Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA. 2016;113:7846–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif