Aguayo AJ, Rasminsky M, Bray GM, et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci. 1991;331(1261):337–43. https://doi.org/10.1098/rstb.1991.0025.
Article CAS PubMed Google Scholar
Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol. 2015;7(3): a020602. https://doi.org/10.1101/cshperspect.a020602.
Article PubMed Central Google Scholar
Ry C. Degeneration and regeneration of the nervous system. London UK: Oxford University Press; 1928.
Zörner B, Schwab ME. Anti‐Nogo on the go: from animal models to a clinical trial. Annals New York Acad Sci. 2010;1198(s1):E22. https://doi.org/10.1111/j.1749-6632.2010.05566.x.
Popovich PG, Guan Z, McGaughy V, et al. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol. 2002;61(7):623–33.
Article CAS PubMed Google Scholar
Popovich PG, Guan Z, Wei P, et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 1999;158(2):351–65. https://doi.org/10.1006/exnr.1999.7118.
Article CAS PubMed Google Scholar
Fleming JC, Norenberg MD, Ramsay DA, et al. The cellular inflammatory response in human spinal cords after injury. Brain. 2006;129(Pt 12):3249–69. https://doi.org/10.1093/brain/awl296.
Werndle MC, Saadoun S, Phang I, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study*. Crit Care Med. 2014;42(3):646–55. https://doi.org/10.1097/ccm.0000000000000028.
Saadoun S, Werndle MC, Lopez de Heredia L, et al. The dura causes spinal cord compression after spinal cord injury. British J Neurosurg. 2016;30(5):582–4. https://doi.org/10.3109/02688697.2016.1173191.
Kwon BK, Curt AN, Belanger LM, et al. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial-Clinical article. J Neurosurg Spine. 2009;10(3):181–93. https://doi.org/10.3171/2008.10.SPINE08217.
Grassner L, Winkler PA, Strowitzki M, et al. Increased intrathecal pressure after traumatic spinal cord injury: an illustrative case presentation and a review of the literature. Eur Spine J. 2017;26(1):20–5. https://doi.org/10.1007/s00586-016-4769-9.
Werndle MC, Saadoun S, Phang I, et al. Measurement and optimisation of spinal cord perfusion pressure in acute spinal cord injury. Br J Neurosurg. 2013;27(5):556. https://doi.org/10.3109/02688697.2013.833786.
Fehlings MG, Tetreault LA, Wilson JR, et al. A clinical practice guideline for the management of patients with acute spinal cord injury and central cord syndrome: recommendations on the timing (≤24 H Versus >24 H) of decompressive surgery. Global Spine J. 2017;7(3 Suppl):195s–202s. https://doi.org/10.1177/2192568217706367.
Article PubMed PubMed Central Google Scholar
Hadley MN, Walters BC, Grabb PA, et al. Management of acute central cervical spinal cord injuries. Neurosurgery. 2002;50(3 Suppl):S166–72. https://doi.org/10.1097/00006123-200203001-00025.
Article CAS PubMed Google Scholar
Walters BC, Hadley MN, John Hurlbert R, Aarabi B, Dhall SS, Gelb DE, Harrigan MR, Rozelle CJ, Ryken TC, Theodore N. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(Supplement 1):82–91. https://doi.org/10.1227/01.neu.0000430319.32247.7f.
Streijger F, Kim KT, So K, et al. Duraplasty in traumatic thoracic spinal cord injury: impact on spinal cord hemodynamics, tissue metabolism, histology, and behavioral recovery using a porcine model. J Neurotrauma. 2021;38(21):2937–55. https://doi.org/10.1089/neu.2021.0084.
Streijger F, So K, Manouchehri N, et al. Changes in pressure, hemodynamics, and metabolism within the spinal cord during the first 7 days after injury using a porcine model. J Neurotrauma. 2017;34(24):3336–50. https://doi.org/10.1089/neu.2017.5034.
Phang I, Werndle MC, Saadoun S, et al. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study. J Neurotrauma. 2015;32(12):865–74. https://doi.org/10.1089/neu.2014.3668.
Article PubMed PubMed Central Google Scholar
Varsos GV, Werndle MC, Czosnyka ZH, et al. Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. J Neurosurg Spine. 2015;23(6):763–71. https://doi.org/10.3171/2015.3.Spine14870.
Phang I, Papadopoulos MC. Intraspinal pressure monitoring in a patient with spinal cord injury reveals different intradural compartments: injured spinal cord pressure evaluation (ISCoPE) study. Neurocrit Care. 2015;23(3):414–8. https://doi.org/10.1007/s12028-015-0153-6.
Saadoun S, Chen S, Papadopoulos MC. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J Neurol, Neurosurg Psych. 2017;88(5):452–3. https://doi.org/10.1136/jnnp-2016-314600.
Phang IS, Werndle MC, Varsos G, et al. Injured spinal cord pressure evaluation (iscope) study: expansion duroplasty reduces spinal cord pressure in acute spinal cord injury. J Neurotrauma. 2014;31(5):A28. https://doi.org/10.1089/neu.2014.9937.
Theodore N, Martirosyan N, Hersh AM, et al. Cerebrospinal fluid drainage in patients with acute spinal cord injury: a multi-center randomized controlled trial. World Neurosurg. 2023. https://doi.org/10.1016/j.wneu.2023.06.078.
Thygesen MM, Entezari S, Houlind N, Nielsen TH, Olsen NØ, Nielsen TD, Skov M, Borgstedt-Bendixen J, Tankisi A, Rasmussen M, Einarsson HB, Agger P, Orlowski D, Dyrskog SE, Thorup L, Pedersen M, Rasmussen MM. A 72-h sedated porcine model of traumatic spinal cord injury. Brain Spine. 2024;4:102813. https://doi.org/10.1016/j.bas.2024.102813.
Article PubMed PubMed Central Google Scholar
Lee JH, Jones CF, Okon EB, et al. A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma. 2013;30(3):142–59. https://doi.org/10.1089/neu.2012.2386.
Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. In: Poon WS, Chan MTV, Goh KYC, Lam JMK, Ng SCP, Marmarou A, Avezaat CJJ, Pickard JD, Czosnyka M, Hutchinson PJA, Katayama Y, editors. Intracranial Pressure and Brain Monitoring XII. Vienna: Springer Vienna; 2005. p. 43–9. https://doi.org/10.1007/3-211-32318-X_10.
Budohoski KP, Czosnyka M, de Riva N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71(3):652–61. https://doi.org/10.1227/NEU.0b013e318260feb1.
Chen SL, Smielewski P, Czosnyka M, et al. Continuous monitoring and visualization of optimum spinal cord perfusion pressure in patients with acute cord injury. J Neurotrauma. 2017;34(21):2941–9. https://doi.org/10.1089/neu.2017.4982.
Squair JW, Bélanger LM, Tsang A, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7. https://doi.org/10.1212/wnl.0000000000004519.
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.
Article CAS PubMed Google Scholar
Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66. https://doi.org/10.1007/s12028-011-9630-8.
Article CAS PubMed Google Scholar
Hogg FRA, Gallagher MJ, Chen SL, et al. Predictors of intraspinal pressure and optimal cord perfusion pressure after traumatic spinal cord injury. Neurocrit Care. 2019;30(2):421–8.
留言 (0)