Genome location, evolution and centromeric contribution of satellite DNAs shared between the two closely related species Drosophila serido and D. antonietae (repleta group, buzzatii cluster)

Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gky379

Article  PubMed  PubMed Central  Google Scholar 

Ashburner M (1989) Drosophila. A laboratory handbook. Cold spring harbor laboratory press. ISBN: 0879693215

Baimai V (1977) Chromosomal polymorphisms of constitutive heterochromatin and inversions in Drosophila. Genetics 1:85–93

Article  Google Scholar 

Baimai V, Sene FM, Pereira MAQR (1983) Heterochromatin and karyotypic differentiation of some neotropical cactubreeding species of the Drosophila repleta group. Genetica 67:81–92

Article  Google Scholar 

Barrios-leal DY, Menezes RST, Ribeiro JV, Bizzo L, Sene FM, Neves-da-Rocha J, Manfrin MH (2021) A holocenic and dynamic hybrid zone between two cactophilic Drosophila species in a coastal lowland plain of the Brazilian Atlantic Forest. J Evol Biol. https://doi.org/10.1111/jeb.13934

Article  PubMed  Google Scholar 

Beridze T (1986) Satellite DNA. Springer, Berlin Heidelberg New York

Book  Google Scholar 

Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z

Article  CAS  PubMed  Google Scholar 

Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species Gen 177(3):1277-90

CAS  Google Scholar 

Brajković J, Feliciello I, Bruvo-Mađaric B, Ugarković D (2012) Satellite DNA-like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3. Genes Genomes Genet 2:931–941. https://doi.org/10.1534/g3.112.003467

Article  CAS  Google Scholar 

Cabral-de-Mello DC, Mora P, Rico-Porras JM, Ferretti ABSM, Palomeque T, Lorite P (2023) The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. Insect Mol Biol. 2023;32:725–737. https://doi.org/10.1111/imb.12868

Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220. https://doi.org/10.1038/371215a0

Article  CAS  PubMed  Google Scholar 

Craddock EM, Gall JG, Jonas M (2016) Hawaiian Drosophila genomes: size variation and evolutionary expansions. Genetica 144:107–124. https://doi.org/10.1007/s10709-016-9882-5

Article  PubMed  Google Scholar 

Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2006.10.004

Article  PubMed  Google Scholar 

Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GCS (2014) Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol 6:1302–1313. https://doi.org/10.1093/gbe/evu108

Article  PubMed  PubMed Central  Google Scholar 

Dias GB, Heringer P, Svartman M, Kuhn GCS (2015) Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome Res 23(3):597–613. https://doi.org/10.1007/s10577-015-9480-x

Article  CAS  PubMed  Google Scholar 

Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

Article  Google Scholar 

Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. https://doi.org/10.1038/299111a0

Article  CAS  PubMed  Google Scholar 

Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19. https://doi.org/10.1186/1471-2105-5-113

Article  CAS  Google Scholar 

Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000234

Article  PubMed  PubMed Central  Google Scholar 

Fingerhut JM, Moran JV, Yamashita YM (2019) Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1008028

Article  PubMed  PubMed Central  Google Scholar 

Flynn JM, Long M, Wing RA, Clark AG (2020) Evolutionary dynamics of abundant 7-bp satellites in the genome of Drosophila virilis. Mol Biol Evol 37:1362–1375. https://doi.org/10.1093/molbev/msaa010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franco FF, Manfrin MH (2012) Recent demographic history of cactophilic Drosophila species can be related to quaternary palaeoclimatic changes in South America. J Biogeogr 40:142–154. https://doi.org/10.1111/j.1365-2699.2012.02777.x

Article  Google Scholar 

Franco FF, Prado PRR, Sene FM, Costa LF, Manfrin MH (2006) Aedeagus morphology as a discriminant marker in two closely related cactophilic species of Drosophila (Diptera; Drosophilidae) in South America. . https://doi.org/10.1590/s0001-37652006000200002

Franco FF, Sene FM, Manfrin MH (2008) Molecular characterization of SSS139, a new satellite DNA family in sibling species of the Drosophila buzzatii cluster. Genet Mol Biol 31:155–159. https://doi.org/10.1590/S1415-47572008000100026

Article  CAS  Google Scholar 

Franco FF, Sene FM, Manfrin MH (2010) Low Satellite DNA variability in natural populations of Drosophila antonietae involved in different evolutionary events. J Hered. https://doi.org/10.1093/jhered/esq056

Article  PubMed  Google Scholar 

Gall JG, Cohen EH, Polan ML (1971) Repetitive DNA sequences in Drosophila. Chromosoma 33:319–344. https://doi.org/10.1007/BF00284948

Article  CAS  PubMed  Google Scholar 

Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8(9):230. https://doi.org/10.3390/genes8090230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gržan T, Dombi M, Despot-Slade E, Veseljak D, Volarić M, Meštrović N, Plohl M, Mravinac B (2023) The Low-Copy-Number Satellite DNAs of the Model Beetle Tribolium castaneum. Genes (Basel) 14(5):999. https://doi.org/10.3390/genes14050999

Article  CAS  PubMed  Google Scholar 

Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. https://doi.org/10.1038/35016000

Article  CAS  PubMed  Google Scholar 

Jagannathan M, Cummings R, Yamashita YM (2018) A conserved function for pericentromeric satellite DNA. eLife 7:e34122. https://doi.org/10.7554/eLife.34122

Article  PubMed  PubMed Central  Google Scholar 

Jagannathan M, Cummings R, Yamashita YM (2019) The modular mechanism of chromocenter formation in Drosophila. eLife 8:e43938. https://doi.org/10.7554/eLife.43938

Article  PubMed  PubMed Central  Google Scholar 

Joshi SS, Meller VH (2017) Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol 27:1393–1402. https://doi.org/10.1016/j.cub.2017.03.078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kokudai CBS, Sene FM, Manfrin MH (2011) Sympatry and Asymmetric Introgression between the Cactophilic species Drosophila serido and Drosophila antonietae. Annals of the Entomological Society of America. Drosophilidae, Diptera. https://doi.org/10.1603/AN10096

Chapter  Google Scholar 

Kuhn GCS, Heslop-Harrison JS (2011) Characterization and genomic organization of PERI, a repetitive DNA in the Drosophila buzzatii cluster related to DINE-1 transposable elements and highly abundant in the sex chromosomes. Cytogenet Genome Res 132(1–2):79–88. https://doi.org/10.1159/000320921

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif