Chromatin organization and behavior in HRAS-transformed mouse fibroblasts

Abdennur N, Mirny LA (2020) Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36:311–316. https://doi.org/10.1093/bioinformatics/btz540

Article  CAS  PubMed  Google Scholar 

Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229–244. https://doi.org/10.1038/nrm.2017.119

Article  CAS  PubMed  Google Scholar 

Ashwin SS, Nozaki T, Maeshima K, Sasai M (2019) Organization of fast and slow chromatin revealed by single-nucleosome dynamics. Proc Natl Acad Sci U S A 116:19939–19944. https://doi.org/10.1073/pnas.1907342116

Article  ADS  CAS  PubMed  Google Scholar 

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. https://doi.org/10.1126/science.1127344

Article  ADS  PubMed  Google Scholar 

Bustin M, Misteli T (2016) Nongenetic functions of the genome. Science 352:aad6933. https://doi.org/10.1126/science.aad6933

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dekker J, Heard E (2015) Structural and functional diversity of Topologically Associating Domains. FEBS Lett 589:2877–2884. https://doi.org/10.1016/j.febslet.2015.08.044

Article  CAS  PubMed  Google Scholar 

Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. https://doi.org/10.1038/nrg3454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunn KL, He S, Wark L, Delcuve GP, Sun JM, Yu Chen H, Mai S, Davie JR (2009) Increased genomic instability and altered chromosomal protein phosphorylation timing in HRAS-transformed mouse fibroblasts. Genes Chromosomes Cancer 48:397–409. https://doi.org/10.1002/gcc.20649

Article  CAS  PubMed  Google Scholar 

Egan SE, McClarty GA, Jarolim L, Wright JA, Spiro I, Hager G, Greenberg AH (1987) Expression of H-ras correlates with metastatic potential: evidence for direct regulation of the metastatic phenotype in 10T1/2 and NIH 3T3 cells. Mol Cell Biol 7:830–837. https://doi.org/10.1128/mcb.7.2.830-837.1987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38:276–278. https://doi.org/10.1038/s41587-020-0439-x

Article  CAS  PubMed  Google Scholar 

Furusawa T, Rochman M, Taher L, Dimitriadis EK, Nagashima K, Anderson S, Bustin M (2015) Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat Commun 6:6138. https://doi.org/10.1038/ncomms7138

Article  ADS  CAS  PubMed  Google Scholar 

Gerlitz G (2020) The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 8:394. https://doi.org/10.3389/fcell.2020.00394

Article  PubMed  PubMed Central  Google Scholar 

Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA, Sellou H, Politi AZ, Ellenberg J, Gallardo F, Bystricky K (2017) Real-Time Imaging of a Single Gene Reveals Transcription-Initiated Local Confinement. Biophys J 113:1383–1394. https://doi.org/10.1016/j.bpj.2017.08.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46. https://doi.org/10.1038/nrg2008

Article  CAS  PubMed  Google Scholar 

Hihara S, Pack CG, Kaizu K, Tani T, Hanafusa T, Nozaki T, Takemoto S, Yoshimi T, Yokota H, Imamoto N et al (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2:1645–1656. https://doi.org/10.1016/j.celrep.2012.11.008

Article  CAS  PubMed  Google Scholar 

Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J (2022) Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 25:104978. https://doi.org/10.1016/j.isci.2022.104978

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ide S, Tamura S, Maeshima K (2022) Chromatin behavior in living cells: lessons from single-nucleosome imaging and tracking. BioEssays 44:e2200043. https://doi.org/10.1002/bies.202200043

Article  CAS  PubMed  Google Scholar 

Iida S, Shinkai S, Itoh Y, Tamura S, Kanemaki MT, Onami S, Maeshima K (2022) Single-nucleosome imaging reveals steady-state motion of interphase chromatin in living human cells. Sci Adv 8:eabn5626. https://doi.org/10.1126/sciadv.abn5626

Izeddin I, Recamier V, Bosanac L, Cisse II, Boudarene L, Dugast-Darzacq C, Proux F, Benichou O, Voituriez R, Bensaude O et al (2014) Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3. https://doi.org/10.7554/eLife.02230

Janssen A, Colmenares SU, Karpen GH (2018) Heterochromatin: Guardian of the Genome. Annu Rev Cell Dev Biol 34:265–288. https://doi.org/10.1146/annurev-cellbio-100617-062653

Article  CAS  PubMed  Google Scholar 

Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702. https://doi.org/10.1038/nmeth.1237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinesh GG, Sambandam V, Vijayaraghavan S, Balaji K, Mukherjee S (2018) Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene 37:839–846. https://doi.org/10.1038/onc.2017.377

Article  CAS  PubMed  Google Scholar 

Kawaguchi A, Tanaka EM (2023) Chromosome Conformation Capture for Large Genomes. Methods Mol Biol 2562:291–318. https://doi.org/10.1007/978-1-0716-2659-7_20

Article  CAS  PubMed  Google Scholar 

Kimura H, Cook PR (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153:1341–1353. https://doi.org/10.1083/jcb.153.7.1341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koyama M, Kurumizaka H (2018) Structural diversity of the nucleosome. J Biochem 163:85–95. https://doi.org/10.1093/jb/mvx081

Article  CAS  PubMed  Google Scholar 

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

Article  ADS  CAS  PubMed  Google Scholar 

Lakadamyali M (2022) Single nucleosome tracking to study chromatin plasticity. Curr Opin Cell Biol 74:23–28. https://doi.org/10.1016/j.ceb.2021.12.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS (2020) Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Mol Cell 79(677–688):e676. https://doi.org/10.1016/j.molcel.2020.05.036

Article  CAS  Google Scholar 

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. https://doi.org/10.1038/38444

Article  ADS  CAS  PubMed  Google Scholar 

Maeshima K, Tamura S, Shimamoto Y (2018) Chromatin as a nuclear spring. Biophys Physicobiol 15:189–195. https://doi.org/10.2142/biophysico.15.0_189

Article  CAS  PubMed  Google Scholar 

Maeshima K, Iida S, Shimazoe MA, Tamura S, Ide S (2024) Is euchromatin really open in the cell? Trends Cell Biol 34:7–17 https://doi.org/10.1016/j.tcb.2023.05.007

Maeshima K, Iida S, Tamura S (2021) Physical Nature of Chromatin in the Nucleus. Cold Spring Harb Perspect Biol 13. https://doi.org/10.1101/cshperspect.a040675

Maizels Y, Elbaz A, Hernandez-Vicens R, Sandrusy O, Rosenberg A, Gerlitz G (2017) Increased chromatin plasticity supports enhanced metastatic potential of mouse melanoma cells. Exp Cell Res 357:282–290. https://doi.org/10.1016/j.yexcr.2017.05.025

Article  CAS  PubMed 

留言 (0)

沒有登入
gif