Energy balance analysis suggests that lactate is not a direct cause of the slow component of oxygen uptake kinetics

Adami A, Pizzinelli P, Bringard A et al (2013) Cardiovascular re-adjustments and baroreflex response during clinical reambulation procedure at the end of 35-day bed rest in humans. Appl Physiol Nutr Metab 38:673–680. https://doi.org/10.1139/apnm-2012-0396

Article  PubMed  Google Scholar 

Åstrand P-O (ed) (2003) Textbook of work physiology: physiological bases of exercise, 4th edn. Human Kinetics, Champaign

Google Scholar 

Barstow TJ, Mole PA (1991) Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 71:2099–2106. https://doi.org/10.1152/jappl.1991.71.6.2099

Article  CAS  PubMed  Google Scholar 

Barstow TJ, Jones AM, Nguyen PH, Casaburi R (1996) Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol 81:1642–1650. https://doi.org/10.1152/jappl.1996.81.4.1642

Article  CAS  PubMed  Google Scholar 

Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol. https://doi.org/10.1152/jappl.1992.73.4.1644

Article  PubMed  Google Scholar 

Bonjour J, Capelli C, Antonutto G et al (2010) Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration. Respir Physiol Neurobiol 171:128–134. https://doi.org/10.1016/j.resp.2010.02.013

Article  PubMed  Google Scholar 

Borrelli M, Shokohyar S, Rampichini S et al (2024) Energetics of sinusoidal exercise below and across critical power and the effects of fatigue. Eur J Appl Physiol 124:1845–1859. https://doi.org/10.1007/s00421-023-05410-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchfuhrer MJ, Hansen JE, Robinson TE et al (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564. https://doi.org/10.1152/jappl.1983.55.5.1558

Article  CAS  PubMed  Google Scholar 

Camus G, Atchou G, Bruckner JC et al (1988) Slow upward drift of V̇O2 during constant-load cycling in untrained subjects. Europ J Appl Physiol 58:197–202. https://doi.org/10.1007/BF00636626

Article  CAS  Google Scholar 

Cannon DT, Bimson WE, Hampson SA et al (2014) Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension. J Physiol 592:5287–5300. https://doi.org/10.1113/jphysiol.2014.279174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capelli C, Antonutto G, Zamparo P et al (1993) Effects of prolonged cycle ergometer exercise on maximal muscle power and oxygen uptake in humans. Europ J Appl Physiol 66:189–195. https://doi.org/10.1007/BF00235092

Article  CAS  Google Scholar 

Casaburi R, Storer TW, Ben-Dov I, Wasserman K (1987) Effect of endurance training on possible determinants of V̇O2 during heavy exercise. J Appl Physiol 62:199–207. https://doi.org/10.1152/jappl.1987.62.1.199

Article  CAS  PubMed  Google Scholar 

Cerretelli P, Pendergast DR, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on V̇O2 on-response and early blood lactate. J Appl Physiol 47:761–769

Article  CAS  PubMed  Google Scholar 

Colosio AL, Caen K, Bourgois JG et al (2020) Bioenergetics of the V̇O2 slow component between exercise intensity domains. Pflugers Arch Eur J Physiol 472:1447–1456. https://doi.org/10.1007/s00424-020-02437-7

Article  CAS  Google Scholar 

di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

Article  PubMed  Google Scholar 

di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118:103–115. https://doi.org/10.1016/S0034-5687(99)00083-3

Article  PubMed  Google Scholar 

di Prampero PE, Margaria R (1968) Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise. Pflugers Arch 304:11–19. https://doi.org/10.1007/BF00586714

Article  PubMed  Google Scholar 

di Prampero PE, Pendergast DR, Wilson DW, Rennie DW (1978) Blood lactic acid concentration in high velocity swimming. In: Swimming Medicine IV: proceedings of the Fourth International Congress on Swimming Medicine, University Park Press. Eriksson B, Furberg B, Baltimore MD, USA, pp 249–261

di Prampero PE, Francescato MP, Cettolo V (2003) Energetics of muscular exercise at work onset: the steady-state approach. Pflügers Arch Eur J Physiol 445:741–746. https://doi.org/10.1007/s00424-002-0991-x

Article  CAS  Google Scholar 

Dickinson S (1929) The efficiency of bicycle pedalling as affected by speed and load. J Physiol 67:243–255. https://doi.org/10.1113/jphysiol.1929.sp002565

Article  Google Scholar 

Ferretti G (2014) Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 114:2007–2036. https://doi.org/10.1007/s00421-014-2911-0

Article  CAS  PubMed  Google Scholar 

Ferretti G (2015) Energetics of muscular exercise. Springer International Publishing, Cham

Book  Google Scholar 

Ferretti G, Fagoni N, Taboni A et al (2022) A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 122:1317–1365. https://doi.org/10.1007/s00421-022-04901-x

Article  PubMed  PubMed Central  Google Scholar 

Francescato MP, Girardis M, di Prampero PE (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol 72:51–57. https://doi.org/10.1007/BF00964114

Article  CAS  Google Scholar 

Francescato MP, Cettolo V, Di Prampero PE (2013) Oxygen uptake kinetics at work onset: role of cardiac output and of phosphocreatine breakdown. Respir Physiol Neurobiol 185:287–295. https://doi.org/10.1016/j.resp.2012.09.015

Article  CAS  PubMed  Google Scholar 

Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139

Article  CAS  PubMed  Google Scholar 

Hagberg JM, Mullin JP, Nagle FJ (1978) Oxygen consumption during constant-load exercise. J Appl Physiol 45:381–384. https://doi.org/10.1152/jappl.1978.45.3.381

Article  CAS  PubMed  Google Scholar 

Iannetta D, Ingram CP, Keir DA, Murias JM (2022) Methodological reconciliation of CP and MLSS and their agreement with the maximal metabolic steady state. Med Sci Sports Exerc 54:622–632. https://doi.org/10.1249/MSS.0000000000002831

Article  CAS  PubMed  Google Scholar 

Jones AM, Grassi B, Christensen PM et al (2011) Slow component of V̇O2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc 43:2046–2062. https://doi.org/10.1249/MSS.0b013e31821fcfc1

Article  PubMed  Google Scholar 

Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol 44:350–352

Article  CAS  PubMed  Google Scholar 

Koga S, Poole DC, Shiojiri T et al (2005) Comparison of oxygen uptake kinetics during knee extension and cycle exercise. Am J Physiol-Regul Integr Comp Physiol 288:R212–R220. https://doi.org/10.1152/ajpregu.00147.2004

Article  CAS  PubMed  Google Scholar 

Krustrup P, Jones AM, Wilkerson DP et al (2009) Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol 587:1843–1856. https://doi.org/10.1113/jphysiol.2008.166397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lador F, Tam E, Adami A et al (2013) Cardiac output, O2 delivery and V̇O2 kinetics during step exercise in acut

留言 (0)

沒有登入
gif