The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations

Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn PL, Hanefeld U (2022) Methyltransferases: Functions and Applications. ChemBioChem 23(18):e202200212. https://doi.org/10.1002/cbic.202200212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abu Shelbayeh O, Arroum T, Morris S, Busch KB (2023) PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 12(5):1075. https://doi.org/10.3390/antiox12051075

Article  CAS  PubMed  Google Scholar 

Al-Amrani S, Al-Jabri Z, Al-Zaabi A, Alshekaili J, Al-Khabori M (2021) Proteomics: Concepts and applications in human medicine. World J Biol Chem 12(5):57–69. https://doi.org/10.4331/wjbc.v12.i5.57

Article  PubMed  PubMed Central  Google Scholar 

Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skeletal Muscle 1(1):26. https://doi.org/10.1186/2044-5040-1-26

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson E, Durstine JL (2019) Physical activity, exercise, and chronic diseases: A brief review. Sports Medicine and Health Science 1(1):3–10. https://doi.org/10.1016/j.smhs.2019.08.006

Article  PubMed  PubMed Central  Google Scholar 

Angeloni A, Bogdanovic O (2021) Sequence determinants, function, and evolution of CpG islands. Biochem Soc Trans 49(3):1109–1119. https://doi.org/10.1042/bst20200695

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ato S, Tsushima D, Isono Y, Suginohara T, Maruyama Y, Nakazato K, Ogasawara R (2019) The Effect of Changing the Contraction Mode During Resistance Training on mTORC1 Signaling and Muscle Protein Synthesis. Front Physiol 10:406

Article  PubMed  PubMed Central  Google Scholar 

Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Investig 116(7):1853–1864. https://doi.org/10.1172/JCI27438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagley JR, Burghardt KJ, McManus R, Howlett B, Costa PB, Coburn JW, Arevalo JA, Malek MH, Galpin AJ (2020) Epigenetic responses to acute resistance exercise in trained vs. sedentary men. The J Strength Conditioning Res 34(6):1574–1580. https://doi.org/10.1519/jsc.0000000000003185

Article  Google Scholar 

Bajpeyi S, Covington JD, Taylor EM, Stewart LK, Galgani JE, Henagan TM (2017) Skeletal Muscle PGC1α -1 Nucleosome Position and -260 nt DNA Methylation Determine Exercise Response and Prevent Ectopic Lipid Accumulation in Men. Endocrinology 158(7):2190–2199. https://doi.org/10.1210/en.2017-00051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker JS, McCormick MC, Robergs RA (2010) Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutrition Metabolism 2010:13. https://doi.org/10.1155/2010/905612

Article  CAS  Google Scholar 

Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411. https://doi.org/10.1016/j.cmet.2012.01.001

Article  CAS  PubMed  Google Scholar 

Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. https://doi.org/10.1101/gad.947102

Article  CAS  PubMed  Google Scholar 

Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA (2021) Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 10(4):537. https://doi.org/10.3390/antiox10040537

Article  CAS  PubMed  Google Scholar 

Buchthal B, Lau D, Weiss U, Weislogel J-M, Bading H (2012) Nuclear Calcium Signaling Controls Methyl-CpG-binding Protein 2 (MeCP2) Phosphorylation on Serine 421 following Synaptic Activity *. J Biol Chem 287(37):30967–30974. https://doi.org/10.1074/jbc.M112.382507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput J-P, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54(24):1451–1462. https://doi.org/10.1136/bjsports-2020-102955

Article  PubMed  Google Scholar 

Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

CAS  PubMed  PubMed Central  Google Scholar 

Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med (Auckland, NZ) 37(9):737–763. https://doi.org/10.2165/00007256-200737090-00001

Article  Google Scholar 

Consorti A, Di Marco I, Sansevero G (2021) Physical exercise modulates brain physiology through a network of long- and short-range cellular interactions. Front Mol Neurosci 14:710303. https://doi.org/10.3389/fnmol.2021.710303

Article  PubMed  PubMed Central  Google Scholar 

Cramer AAW, Prasad V, Eftestøl E, Song T, Hansson K-A, Dugdale HF, Sadayappan S, Ochala J, Gundersen K, Millay DP (2020) Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun 11(1):6287. https://doi.org/10.1038/s41467-020-20058-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhar GA, Saha S, Mitra P, Nag Chaudhuri R (2021) DNA methylation and regulation of gene expression: guardian of our health. Nucleus (Calcutta) 64(3):259–270. https://doi.org/10.1007/s13237-021-00367-y

Article  CAS  PubMed  Google Scholar 

Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drake JC, Wilson RJ, Yan Z (2016) Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. Faseb j 30(1):13–22. https://doi.org/10.1096/fj.15-276337

Article  CAS  PubMed  Google Scholar 

Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. https://doi.org/10.1002/cphy.c140068

Article  PubMed  Google Scholar 

Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012

Article  CAS  PubMed  Google Scholar 

Figueiredo V, Wen Y, Alkner B, Fernandez-Gonzalo R, Norrbom J, Vechetti I, Valentino T, Mobley CB, Zentner G, Peterson C, McCarthy J, Murach K, Walden F (2021) Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. The J Physiol 599:3363–3384. https://doi.org/10.1113/JP281244

Article  CAS  PubMed  Google Scholar 

Fitz-James MH, Cavalli G (2022) Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet 23(6):325–341. https://doi.org/10.1038/s41576-021-00438-5

Article  CAS  PubMed  Google Scholar 

Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y

Article 

留言 (0)

沒有登入
gif