Cardiac adaptations in young triathletes: a 9-month longitudinal study during the peak height velocity period

Al Saikhan L, Park C, Hardy R, Hughes A (2019) Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: a meta-analysis. Vasc Health Risk Manag 15:229–251. https://doi.org/10.2147/VHRM.S206747

Article  PubMed  PubMed Central  Google Scholar 

Beaumont A, Grace F, Richards J et al (2017) Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies. Sports Med 47:1145–1170. https://doi.org/10.1007/s40279-016-0644-4

Article  PubMed  Google Scholar 

Bergeron MF, Mountjoy M, Armstrong N et al (2015) International olympic committee consensus statement on youth athletic development. Br J Sports Med 49:843–851. https://doi.org/10.1136/bjsports-2015-094962

Article  PubMed  Google Scholar 

Bjerring AW, Landgraff HE, Leirstein S et al (2018) Morphological changes and myocardial function assessed by traditional and novel echocardiographic methods in preadolescent athlete’s heart. Eur J Prev Cardiol 25:1000–1007. https://doi.org/10.1177/2047487318776079

Article  PubMed  Google Scholar 

Bjerring AW, Landgraff HE, Stokke TM et al (2019) The developing athlete’s heart: a cohort study in young athletes transitioning through adolescence. Eur J Prev Cardiol 26:2001–2008. https://doi.org/10.1177/2047487319862061

Article  PubMed  Google Scholar 

Bjerring AW, Landgraff HEW, Leirstein S et al (2021) From talented child to elite athlete: the development of cardiac morphology and function in a cohort of endurance athletes from age 12 to 18. Eur J Prev Cardiol 28:1061–1067. https://doi.org/10.1177/2047487320921317

Article  PubMed  Google Scholar 

D’Ascenzi F, Cameli M, Lisi M et al (2012) Left atrial remodelling in competitive adolescent soccer players. Int J Sports Med 33:795–801. https://doi.org/10.1055/s-0032-1304660

Article  PubMed  Google Scholar 

Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618. https://doi.org/10.1161/01.cir.55.4.613

Article  CAS  PubMed  Google Scholar 

Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311

PubMed  Google Scholar 

Ekblom B, Hermansen L (1968) Cardiac output in athletes. J Appl Physiol 25:619–625. https://doi.org/10.1152/jappl.1968.25.5.619

Article  CAS  PubMed  Google Scholar 

Forså MI, Bjerring AW, Haugaa KH et al (2023) Young athlete’s growing heart: sex differences in cardiac adaptation to exercise training during adolescence. Open Heart 10:e002155. https://doi.org/10.1136/openhrt-2022-002155

Article  PubMed  PubMed Central  Google Scholar 

Foster C, Florhaug JA, Franklin J et al (2001) A new approach to monitoring exercise training. J Strength Cond Res 15:109–115

CAS  PubMed  Google Scholar 

Galli E, Hubert P, Leurent G et al (2023) Acute and chronic changes in myocardial work parameters in patients with severe primary mitral regurgitation undergoing transcatheter edge-to-edge repair. J Cardiovasc Dev Dis 10:100. https://doi.org/10.3390/jcdd10030100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grandperrin A, Schnell F, Donal E, et al (2023) Specific alterations of regional myocardial work in strength-trained athletes using anabolic androgenic steroids compared to athletes with genetic hypertrophic cardiomyopathy. J Sport Health Sci 12:477–485. https://doi.org/10.1016/j.jshs.2022.07.004

Greenbaum RA, Ho SY, Gibson DG et al (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263. https://doi.org/10.1136/hrt.45.3.248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grendstad H, Skattebo Ø (2022) Puberty, more important for cardiovascular adaptations than endurance training? J Physiol 600:2817–2818. https://doi.org/10.1113/JP283081

Article  CAS  PubMed  Google Scholar 

Ingels NB, Hansen DE, Daughters GT et al (1989) Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ Res 64:915–927. https://doi.org/10.1161/01.RES.64.5.915

Article  PubMed  Google Scholar 

Kroeker CAG, Tyberg JV, Beyar R (1995) Effects of load manipulations, heart rate, and contractility on left ventricular apical rotation. Circulation 92:130–141. https://doi.org/10.1161/01.CIR.92.1.130

Article  Google Scholar 

Lamb KL, Parfitt G, Eston RG (2017) Effort perception: influence of age and cognitive development. In: Armstrong N, van Mechelen W (Eds) Oxford textbook of children’s Sport and Exercise Medicine, 3rd edn. pp 213–222

Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–271. https://doi.org/10.1093/ehjci/jev014

Article  PubMed  Google Scholar 

Larsen CK, Aalen JM, Stokke C et al (2019) Regional myocardial work by cardiac magnetic resonance and non-invasive left ventricular pressure: a feasibility study in left bundle branch block. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jez231

Article  PubMed Central  Google Scholar 

Loncaric F, Marciniak M, Nunno L et al (2021) Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations. Int J Cardiovasc Imaging 37:145–154. https://doi.org/10.1007/s10554-020-01969-4

Article  PubMed  Google Scholar 

Mandigout S, Lecoq AM, Courteix D et al (2001) Effect of gender in response to an aerobic training programme in prepubertal children. Acta Paediatr 90:9–15

Maufrais C, Millet GP, Schuster I et al (2016) Progressive and biphasic cardiac responses during extreme mountain ultramarathon. Am J Physiol Heart Circ Physiol 310:H1340–H1348. https://doi.org/10.1152/ajpheart.00037.2016

Article  PubMed  Google Scholar 

McNarry MA, Armstrong N (2017) Aerobic trainability. Oxford University Press

Millet GP, Candau RB, Barbier B et al (2002) Modelling the transfers of training effects on performance in elite triathletes. Int J Sports Med 23:55–63. https://doi.org/10.1055/s-2002-19276

Article  CAS  PubMed  Google Scholar 

Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34:689–694. https://doi.org/10.1249/00005768-200204000-00020

Article  PubMed  Google Scholar 

Motz R, Schumacher M, Nürnberg J et al (2014) Echocardiographic measurements of cardiac dimensions correlate better with body length than with body weight or body surface area. Pediatr Cardiol 35:1327–1336. https://doi.org/10.1007/s00246-014-0932-4

Article  CAS  PubMed  Google Scholar 

Noble BJ, Borg GA, Jacobs I et al (1983) A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc 15:523–528

Article  CAS  PubMed  Google Scholar 

Notomi Y, Srinath G, Shiota T et al (2006) Maturational and adaptive modulation of left ventricular torsional biomechanics. Circulation 113:2534–2541. https://doi.org/10.1161/CIRCULATIONAHA.105.537639

Article  PubMed  Google Scholar 

Notomi Y, Popović ZB, Yamada H et al (2008) Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00975.2007

Article  PubMed  Google Scholar 

Paysal J, Merlin E, Rochette E et al (2021) Global and regional myocardial work in female adolescents with weight disorders. J Clin Med 10:4671. https://doi.org/10.3390/jcm10204671

Article  PubMed  PubMed Central  Google Scholar 

Pelliccia A (1999) Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med 130:23. https://doi.org/10.7326/0003-4819-130-1-199901050-00005

Article  CAS  PubMed  Google Scholar 

Perkins DR, Talbot JS, Lord RN et al (2022) The influence of maturation on exercise-induced cardiac remodelling and haematological adaptation. J Physiol 600:583–601. https://doi.org/10.1113/JP282282

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif