Influence of deception of task duration on the sex-specific physiological responses to RPE-clamp cycle ergometry

Abbiss CR, Laursen PB (2005) Models to explain fatigue during prolonged endurance cycling. Sports Med (Auckland, n.z.) 35(10):865–898. https://doi.org/10.2165/00007256-200535100-00004

Article  Google Scholar 

Abbiss CR, Peiffer JJ, Meeusen R, Skorski S (2015) Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med (Auckland, n.z.) 45(9):1235–1243. https://doi.org/10.1007/s40279-015-0344-5

Article  Google Scholar 

Albertus Y, Tucker R, Gibson AS, Lambert EV, Hampson DB, Noakes TD (2005) Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med Sci Sports Exerc 37(3):461–468. https://doi.org/10.1249/01.mss.0000155700.72702.76

Article  PubMed  Google Scholar 

Amann M, Secher N (2010) Last word on point: counterpoint: afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. J Appl Physiol 108(2):469–469

Article  Google Scholar 

Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575(Pt 3):937–952. https://doi.org/10.1113/jphysiol.2006.113936

Article  PubMed  PubMed Central  Google Scholar 

Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S (2020) Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol 105(12):2007–2021. https://doi.org/10.1113/EP088548

Article  PubMed  Google Scholar 

Astokorki AHY, Mauger AR (2017) Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports 27(3):309–317. https://doi.org/10.1111/sms.12659

Article  PubMed  Google Scholar 

Azevedo RD, Silva-Cavalcante MD, Lima-Silva AE, Bertuzzi R (2021) Fatigue development and perceived response during self-paced endurance exercise: state-of-the-art review. Eur J Appl Physiol 121(3):687–696. https://doi.org/10.1007/s00421-020-04549-5

Article  PubMed  Google Scholar 

Baden DA, McLean TL, Tucker R, Noakes TD, Gibson SC, A. (2005) Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br J Sports Med 39(10):742–746. https://doi.org/10.1136/bjsm.2004.016980

Article  PubMed  PubMed Central  Google Scholar 

Behm DG, Carter TB (2020) Effect of exercise-related factors on the perception of time. Front Physiol 11:770. https://doi.org/10.3389/fphys.2020.00770

Article  PubMed  PubMed Central  Google Scholar 

Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Richardson RS, Amann M (2016) Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 594(18):5303–5315. https://doi.org/10.1113/JP272283

Article  PubMed  PubMed Central  Google Scholar 

Borg G (1961) Interindividual scaling and perception of muscular work. Kungliga Fysiogr Sällsk I Lund Förh 31(12):117–125

Google Scholar 

Brehm JW, Self EA (1989) The intensity of motivation. Annu Rev Psychol 40:109–131. https://doi.org/10.1146/annurev.ps.40.020189.000545

Article  PubMed  Google Scholar 

Cochrane KC, Housh TJ, Bergstrom HC, Jenkins NDM, Johnson G, Schmidt RJ, Cramer JT (2015a) Physiological responses during cycle ergometry at a constant perception of effort. Int J Sports Med 36(6):466–473. https://doi.org/10.1055/s-0034-1396826

Article  PubMed  Google Scholar 

Cochrane KC, Housh TJ, Jenkins NDM, Bergstrom HC, Smith CM, Hill EC, Johnson GO, Schmidt RJ, Cramer JT (2015b) Electromyographic, mechanomyographic, and metabolic responses during cycle ergometry at a constant rating of perceived exertion. Appl Physiol, Nutr, Metab 40(11):1178–1185. https://doi.org/10.1139/apnm-2015-0144

Article  PubMed  Google Scholar 

Cochrane-Snyman KC, Housh TJ, Smith CM, Hill EC, Jenkins NDM, Schmidt RJ, Johnson GO (2016) Inter-individual variability in the patterns of responses for electromyography and mechanomyography during cycle ergometry using an RPE-clamp model. Eur J Appl Physiol 116(9):1639–1649. https://doi.org/10.1007/s00421-016-3394-y

Article  PubMed  Google Scholar 

Cochrane-Snyman KC, Housh TJ, Smith CM, Hill EC, Jenkins NDM (2019) Treadmill running using an RPE-clamp model: mediators of perception and implications for exercise prescription. Eur J Appl Physiol 119(9):2083–2094. https://doi.org/10.1007/s00421-019-04197-4

Article  PubMed  Google Scholar 

Crum EM, O’Connor WJ, Van Loo L, Valckx M, Stannard SR (2017) Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci 17(8):1037–1043. https://doi.org/10.1080/17461391.2017.1330899

Article  PubMed  Google Scholar 

De Luca CJ, Erim Z (1994) Common drive of motor units in regulation of muscle force. Trends Neurosci 17(7):299–305. https://doi.org/10.1016/0166-2236(94)90064-7

Article  PubMed  Google Scholar 

Deaner RO, Carter RE, Joyner MJ, Hunter SK (2015) Men are more likely than women to slow in the marathon. Med Sci Sports Exerc 47(3):607–616. https://doi.org/10.1249/MSS.0000000000000432

Article  PubMed  PubMed Central  Google Scholar 

Degens H, Salmons S, Jarvis JC (1998) Intramuscular pressure, force and blood flow in rabbit tibialis anterior muscles during single and repetitive contractions. Eur J Appl Physiol 78(1):13–19. https://doi.org/10.1007/s004210050381

Article  Google Scholar 

Edwards AM, McCormick A (2017) Time perception, pacing and exercise intensity: maximal exercise distorts the perception of time. Physiol Behav 180:98–102. https://doi.org/10.1016/j.physbeh.2017.08.009

Article  PubMed  Google Scholar 

Edwards AM, Polman RCJ (2013) Pacing and awareness: brain regulation of physical activity. Sports Med (Auckland, n.z.) 43(11):1057–1064. https://doi.org/10.1007/s40279-013-0091-4

Article  Google Scholar 

Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71

Article  PubMed  Google Scholar 

Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84(3):279–279

Article  Google Scholar 

Gibson AS, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38(6):797–806. https://doi.org/10.1136/bjsm.2003.009852

Article  Google Scholar 

Hampson DB, Gibson AS, Lambert MI, Dugas JP, Lambert EV, Noakes TD (2004) Deception and perceived exertion during high-intensity running bouts. Percept Motor Skills 98(3 Pt 1):1027–1038. https://doi.org/10.2466/pms.98.3.1027-1038

Article  PubMed  Google Scholar 

Hanson NJ, Buckworth J (2016) Sex differences in time perception during self-paced running. Int J Exerc Sci 9(3):514–523

Article  PubMed  PubMed Central  Google Scholar 

Hanson NJ, Lee TL (2020) Time flies when You’re at RPE13: how exercise intensity influences perception of time. J Strength Cond Res 34(12):3546–3553. https://doi.org/10.1519/JSC.0000000000002221

Article  PubMed  Google Scholar 

Hureau TJ, Romer LM, Amann M (2018) The “sensory tolerance limit”: a hypothetical construct determining exercise performance? Eur J Sport Sci 18(1):13–24. https://doi.org/10.1080/17461391.2016.1252428

Article  PubMed  Google Scholar 

Jones HS, Williams EL, Marchant D, Sparks SA, Midgley AW, Bridge CA, McNaughton L (2015) Distance-dependent association of affect with pacing strategy in cycling time trials. Med Sci Sports Exerc 47(4):825–832. https://doi.org/10.1249/MSS.0000000000000475

Article  PubMed  Google Scholar 

Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO (2022) Are there sex-specific neuromuscular or force responses to fatiguing isometric muscle actions anchored to a high perceptual intensity? J Strength Cond Res 36(1):156–161. https://doi.org/10.1519/JSC.0000000000003394

Article  PubMed  Google Scholar 

Kirby BS, Clark DA, Bradley EM, Wilkins BW (2021) The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J Appl Physiol (Bethesda, Md. : 1985) 130(6):1915–1927. https://doi.org/10.1152/japplphysiol.00058.2021

Article 

留言 (0)

沒有登入
gif