Charting the future of cardiology with large language model artificial intelligence

Agrawal, M., Hegselmann, S., Lang, H., Kim, Y. & Sontag, D. Large language models are few-shot clinical information extractors. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing https://doi.org/10.18653/v1/2022.emnlp-main.130 (2022).

Article  Google Scholar 

Haberle, T. et al. The impact of nuance DAX ambient listening AI documentation: a cohort study. J. Am. Med. Inform. Assoc. 31, 975–979 (2024).

Article  PubMed  Google Scholar 

Itelman, E., Witberg, G. & Kornowski, R. AI-assisted clinical decision making in interventional cardiology: the potential of commercially available large language models. JACC Cardiovasc. Interv. 17, 1858–1860 (2024).

Article  PubMed  Google Scholar 

Cunningham, J. W. et al. Natural language processing for adjudication of heart failure in a multicenter clinical trial: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 9, 174–181 (2024).

Article  PubMed  Google Scholar 

Han, C. et al. Evaluation of GPT-4 for 10-year cardiovascular risk prediction: insights from the UK Biobank and KoGES data. iScience 27, 109022 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oh, J., Lee, G., Bae, S., Kwon, J. & Choi, E. ECG-QA: a comprehensive question answering dataset combined with electrocardiogram. Proceedings of the 37th International Conference on Neural Information Processing Systems 66277–66288 (Curran, 2024).

Kozaily, E. et al. Accuracy and consistency of online large language model-based artificial intelligence chat platforms in answering patients’ questions about heart failure. Int. J. Cardiol. 408, 132115 (2024).

Article  PubMed  Google Scholar 

Sarraju, A. et al. Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. J. Am. Med. Assoc. 329, 842–844 (2023).

Article  Google Scholar 

Kangiszer, G. et al. Low performance of ChatGPT on echocardiography board review questions. JACC Cardiovasc. Imaging 17, 330–332 (2024).

Article  PubMed  Google Scholar 

Inam, M. et al. A review of top cardiology and cardiovascular medicine journal guidelines regarding the use of generative artificial intelligence tools in scientific writing. Curr. Probl. Cardiol. 49, 102387 (2024).

Article  PubMed  Google Scholar 

Tayebi Arasteh, S. et al. Large language models streamline automated machine learning for clinical studies. Nat. Commun. 15, 1603 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Unlu, O. et al. Retrieval-augmented generation–enabled GPT-4 for clinical trial screening. NEJM AI 1, AIoa2400181 (2024).

Article  Google Scholar 

Zack, T. et al. Assessing the potential of GPT-4 to perpetuate racial and gender biases in health care: a model evaluation study. Lancet Digit. Health 6, e12–e22 (2024).

Article  PubMed  CAS  Google Scholar 

Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

Article  PubMed  CAS  Google Scholar 

Zakka, C. et al. Almanac — retrieval-augmented language models for clinical medicine. NEJM AI 1, AIoa2300068 (2024).

Article  Google Scholar 

留言 (0)

沒有登入
gif