Agrawal, M., Hegselmann, S., Lang, H., Kim, Y. & Sontag, D. Large language models are few-shot clinical information extractors. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing https://doi.org/10.18653/v1/2022.emnlp-main.130 (2022).
Haberle, T. et al. The impact of nuance DAX ambient listening AI documentation: a cohort study. J. Am. Med. Inform. Assoc. 31, 975–979 (2024).
Itelman, E., Witberg, G. & Kornowski, R. AI-assisted clinical decision making in interventional cardiology: the potential of commercially available large language models. JACC Cardiovasc. Interv. 17, 1858–1860 (2024).
Cunningham, J. W. et al. Natural language processing for adjudication of heart failure in a multicenter clinical trial: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 9, 174–181 (2024).
Han, C. et al. Evaluation of GPT-4 for 10-year cardiovascular risk prediction: insights from the UK Biobank and KoGES data. iScience 27, 109022 (2024).
Article PubMed PubMed Central CAS Google Scholar
Oh, J., Lee, G., Bae, S., Kwon, J. & Choi, E. ECG-QA: a comprehensive question answering dataset combined with electrocardiogram. Proceedings of the 37th International Conference on Neural Information Processing Systems 66277–66288 (Curran, 2024).
Kozaily, E. et al. Accuracy and consistency of online large language model-based artificial intelligence chat platforms in answering patients’ questions about heart failure. Int. J. Cardiol. 408, 132115 (2024).
Sarraju, A. et al. Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. J. Am. Med. Assoc. 329, 842–844 (2023).
Kangiszer, G. et al. Low performance of ChatGPT on echocardiography board review questions. JACC Cardiovasc. Imaging 17, 330–332 (2024).
Inam, M. et al. A review of top cardiology and cardiovascular medicine journal guidelines regarding the use of generative artificial intelligence tools in scientific writing. Curr. Probl. Cardiol. 49, 102387 (2024).
Tayebi Arasteh, S. et al. Large language models streamline automated machine learning for clinical studies. Nat. Commun. 15, 1603 (2024).
Article PubMed PubMed Central CAS Google Scholar
Unlu, O. et al. Retrieval-augmented generation–enabled GPT-4 for clinical trial screening. NEJM AI 1, AIoa2400181 (2024).
Zack, T. et al. Assessing the potential of GPT-4 to perpetuate racial and gender biases in health care: a model evaluation study. Lancet Digit. Health 6, e12–e22 (2024).
Article PubMed CAS Google Scholar
Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).
Article PubMed CAS Google Scholar
Zakka, C. et al. Almanac — retrieval-augmented language models for clinical medicine. NEJM AI 1, AIoa2300068 (2024).
留言 (0)