Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).
Article CAS PubMed Google Scholar
Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).
Article CAS PubMed Google Scholar
Atkins, J. F., Gesteland, R. F. & Cech, T. RNA Worlds: From Life’s Origins to Diversity in Gene Regulation (Cold Spring Harbor, 2011).
Butcher, S. E. & Pyle, A. M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc. Chem. Res. 44, 1302–1311 (2011).
Article CAS PubMed Google Scholar
Narlikar, G. J. & Herschlag, D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu. Rev. Biochem. 66, 19–59 (1997).
Article CAS PubMed Google Scholar
Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biophys. 30, 457–475 (2001).
Cech, T. R. Ribozymes, the first 20 years. Biochem. Soc. Trans. 30, 1162–1166 (2002).
Article CAS PubMed Google Scholar
Sherwood, A. V. & Henkin, T. M. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu. Rev. Microbiol. 70, 361–374 (2016).
Article CAS PubMed Google Scholar
Roth, A. & Breaker, R. R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).
Article CAS PubMed PubMed Central Google Scholar
Yang, Y., Harris, K. A., Widner, D. L. & Breaker, R. R. Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proc. Natl Acad. Sci. USA 118, e2020393118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Jaafar, Z. A. & Kieft, J. S. Viral RNA structure-based strategies to manipulate translation. Nat. Rev. Microbiol. 17, 110–123 (2019).
Article CAS PubMed Google Scholar
Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ding, J. et al. Visualizing RNA conformational and architectural heterogeneity in solution. Nat. Commun. 14, 714 (2023).
Article CAS PubMed PubMed Central Google Scholar
Luo, B. et al. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat. Catal. 6, 298–309 (2023).
Bonilla, S. L., Sherlock, M. E., MacFadden, A. & Kieft, J. S. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 374, 955–960 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dethoff, E. A., Chugh, J., Mustoe, A. M. & Al-Hashimi, H. M. Functional complexity and regulation through RNA dynamics. Nature 482, 322–330 (2012).
Article CAS PubMed PubMed Central Google Scholar
Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).
Article CAS PubMed Google Scholar
Zhang, J. & Ferré-D’Amaré, A. R. New molecular engineering approaches for crystallographic studies of large RNAs. Curr. Opin. Struct. Biol. 26, 9–15 (2014).
Spitale, R. C. & Wedekind, J. E. Exploring ribozyme conformational changes with X-ray crystallography. Methods 49, 87–100 (2009).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. & Keane, S. C. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. Wiley Interdiscip. Rev. RNA 10, e1541 (2019).
Article PubMed PubMed Central Google Scholar
Barnwal, R. P., Yang, F. & Varani, G. Applications of NMR to structure determination of RNAs large and small. Arch. Biochem. Biophys. 628, 42–56 (2017).
Article CAS PubMed PubMed Central Google Scholar
Ma, H., Jia, X., Zhang, K. & Su, Z. Cryo-EM advances in RNA structure determination. Signal Transduct. Target Ther. 7, 58 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, K. et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28, 747–754 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ma, H. et al. Auto-DRRAFTER: automated RNA modeling based on cryo-EM density. Methods Mol. Biol. 2568, 193–211 (2023).
Biesiada, M., Purzycka, K. J., Szachniuk, M., Blazewicz, J. & Adamiak, R. W. in RNA Structure Determination: Methods and Protocols (eds Turner, D. H. & Mathews, D. H.) 199–215 (Humana, 2016).
Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016).
Li, T. et al. All-atom RNA structure determination from cryo-EM maps. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02149-8 (2024).
Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).
Article CAS PubMed PubMed Central Google Scholar
Liu, D., Thélot, F. A., Piccirilli, J. A., Liao, M. & Yin, P. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat. Methods 19, 576–585 (2022).
Article CAS PubMed Google Scholar
Sampedro Vallina, N., McRae, E. K. S., Hansen, B. K., Boussebayle, A. & Andersen, E. S. RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli–Pepper aptamer FRET pair. Nucleic Acids Res. 51, 4613–4624 (2023).
留言 (0)