Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes

Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 288, 6850–6912 (2021).

Article  PubMed  Google Scholar 

Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).

Petersen, O. W., Rønnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

Article  PubMed  PubMed Central  Google Scholar 

Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

Article  PubMed  Google Scholar 

Rice, J. J. et al. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2, 57–71 (2013).

Article  PubMed  Google Scholar 

Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Terzopoulou, Z. et al. Biocompatible synthetic polymers for tissue engineering purposes. Biomacromolecules 23, 1841–1863 (2022).

Article  PubMed  Google Scholar 

Jia, X. & Kiick, K. L. Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140–156 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Wang, S., Sekiguchi, R., Daley, W. P. & Yamada, K. M. Patterned cell and matrix dynamics in branching morphogenesis. J. Cell Biol. 216, 559–570 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Afshar, K., Sanaei, M. J., Ravari, M. S., Pourbagheri-Sigaroodi, A. & Bashash, D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell. Biochem. Funct. 41, 930–952 (2023).

Article  PubMed  Google Scholar 

Oudin, M. J. & Weaver, V. M. Physical and chemical gradients in the tumor microenvironment regulate tumor cell invasion, migration, and metastasis. Cold Spring Harb. Symp. Quant. Biol. 8, 189–205 (2016).

Article  Google Scholar 

Kai, F., Drain, A. P. & Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell 49, 332–346 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Stashko, C. et al. A convolutional neural network STIFMap reveals associations between stromal stiffness and EMT in breast cancer. Nat. Commun. 14, 3561 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Hartnick, C. J., Rehbar, R. & Prasad, V. Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115, 4–15 (2005).

Article  PubMed  Google Scholar 

Thibeault, S. L., Gray, S. D., Bless, D. M., Chan, R. W. & Ford, C. N. Histologic and rheologic characterization of vocal fold scarring. J. Voice 16, 96–104 (2002).

Article  PubMed  Google Scholar 

Hirano, S. et al. Histologic characterization of human scarred vocal folds. J. Voice 23, 399–407 (2009).

Article  PubMed  Google Scholar 

Tibbitt, M. W. & Anseth, K. S. Dynamic microenvironments: the fourth dimension. Sci. Transl. Med. 4, 160ps124 (2012).

Article  Google Scholar 

Uto, K., Tsui, J. H., DeForest, C. A. & Kim, D. H. Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog. Polym. Sci. 6, 53–82 (2017).

Article  Google Scholar 

DeForest, C. A. & Anseth, K. S. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421–444 (2012).

Article  PubMed  Google Scholar 

Xie, C. et al. Smart hydrogels for tissue regeneration. Macromol. Biosci. https://doi.org/10.1002/mabi.202300339 (2023).

Neumann, M. et al. Stimuli-responsive hydrogels: the dynamic smart biomaterials of tomorrow. Macromolecules 56, 8377–8392 (2023).

Article  PubMed  PubMed Central  Google Scholar 

McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

Article  PubMed  Google Scholar 

Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211209 (2023).

DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Liu, S., Dicker, K. T. & Jia, X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem. Commun. 51, 5218–5237 (2015).

Article  Google Scholar 

Kloxin, A. M., Tibbitt, M. W. & Anseth, K. S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5, 1867–1887 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2015.12 (2016).

Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

Article  PubMed  Google Scholar 

Wang, Z. et al. Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science 374, 193–196 (2021).

Article  PubMed  Google Scholar 

Amirthalingam, S., Rajendran, A. K., Moon, Y. G. & Hwang, N. S. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. Mater. Horiz. 10, 3325–3350 (2023).

Article  PubMed  Google Scholar 

Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2014194118 (2021).

Urciuolo, A. et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 14, 3128 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Falandt, M. et al. Spatial-selective volumetric 4D printing and single-photon grafting of biomolecules within centimeter-scale hydrogels via tomographic manufacturing. Adv. Mater. Technol. https://doi.org/10.1002/admt.202300026 (2023).

Zhang, H., Dicker, K. T., Xu, X., Jia, X. & Fox, J. M. Interfacial bioorthogonal cross-linking. ACS Macro Lett. 3, 727–731 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Dicker, K. T. et al. Core-shell patterning of synthetic hydrogels via interfacial bioorthogonal chemistry for spatial control of stem cell behavior. Chem. Sci. 9, 5394–5404 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hao, Y. et al. Rapid bioorthogonal chemistry enables in situ modulation of the stem cell behavior in 3D without external triggers. ACS Appl. Mater. Interfaces 10, 26016–26027 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Liu, S. et al. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials 180, 24–35 (2018).

留言 (0)

沒有登入
gif