Tian, S. & Zhou, N. Gaining new insights into fundamental biological pathways by bacterial toxin-based genetic screens. Bioengineering https://doi.org/10.3390/bioengineering10080884 (2023).
Alouf, J. E., Ladant, D., Popoff, M. R. & Aktories, K. The Comprehensive Sourcebook of Bacterial Protein Toxins 4th edn. (Elsevier, 2015).
Dong, M. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 312, 592–596 (2006).
Article CAS PubMed Google Scholar
Naglich, J. G., Metherall, J. E., Russell, D. W. & Eidels, L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).
Article CAS PubMed Google Scholar
Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).
Article CAS PubMed Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).
Article CAS PubMed PubMed Central Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
Article CAS PubMed PubMed Central Google Scholar
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).
Article PubMed PubMed Central Google Scholar
Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2018).
Article CAS PubMed Google Scholar
Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).
Article CAS PubMed PubMed Central Google Scholar
Puschnik, A. S., Majzoub, K., Ooi, Y. S. & Carette, J. E. A CRISPR toolbox to study virus–host interactions. Nat. Rev. Microbiol. 15, 351–364 (2017).
Article CAS PubMed PubMed Central Google Scholar
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
Article CAS PubMed Google Scholar
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).
Article CAS PubMed Google Scholar
Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).
Article CAS PubMed PubMed Central Google Scholar
Tao, L. et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat. Microbiol. 4, 1760–1769 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).
Article CAS PubMed PubMed Central Google Scholar
Tian, S. et al. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat. Commun. 13, 6786 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tian, S. et al. Genome-wide CRISPR screen identifies semaphorin 6a and 6b as receptors for Paeniclostridium sordellii toxin TcsL. Cell Host Microbe 27, 782–792 e787 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tian, S. et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 16, e2006951 (2018).
Article PubMed PubMed Central Google Scholar
Xiong, X. et al. Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell 185, 1157–1171 e1122 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xu, Y. et al. CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor. Nature 610, 349–355 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tian, S. et al. Proteomic analysis identifies membrane proteins dependent on the ER membrane protein complex. Cell Rep. 28, 2517–2526 e2515 (2019).
Article CAS PubMed PubMed Central Google Scholar
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
Article CAS PubMed PubMed Central Google Scholar
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
Article CAS PubMed PubMed Central Google Scholar
Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).
Article CAS PubMed PubMed Central Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).
Article CAS PubMed Google Scholar
Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).
Article CAS PubMed Google Scholar
Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).
Article CAS PubMed Google Scholar
Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).
Article CAS PubMed Google Scholar
Stark, G. R. & Gudkov, A. V. Forward genetics in mammalian cells: functional approaches to gene discovery. Hum. Mol. Genet. 8, 1925–1938 (1999).
Article CAS PubMed Google Scholar
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
Article CAS PubMed PubMed Central Google Scholar
Piccioni, F., Younger, S. T. & Root, D. E. Pooled lentiviral-delivery genetic screens. Curr. Protoc. Mol. Biol. 121, 32 31 31–32 31 21 (2018).
留言 (0)