Design, performance, processing, and validation of a pooled CRISPR perturbation screen for bacterial toxins

Tian, S. & Zhou, N. Gaining new insights into fundamental biological pathways by bacterial toxin-based genetic screens. Bioengineering https://doi.org/10.3390/bioengineering10080884 (2023).

Alouf, J. E., Ladant, D., Popoff, M. R. & Aktories, K. The Comprehensive Sourcebook of Bacterial Protein Toxins 4th edn. (Elsevier, 2015).

Dong, M. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 312, 592–596 (2006).

Article  CAS  PubMed  Google Scholar 

Naglich, J. G., Metherall, J. E., Russell, D. W. & Eidels, L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).

Article  CAS  PubMed  Google Scholar 

Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

Article  CAS  PubMed  Google Scholar 

Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2018).

Article  CAS  PubMed  Google Scholar 

Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puschnik, A. S., Majzoub, K., Ooi, Y. S. & Carette, J. E. A CRISPR toolbox to study virus–host interactions. Nat. Rev. Microbiol. 15, 351–364 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

Article  CAS  PubMed  Google Scholar 

Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, L. et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat. Microbiol. 4, 1760–1769 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, S. et al. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat. Commun. 13, 6786 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, S. et al. Genome-wide CRISPR screen identifies semaphorin 6a and 6b as receptors for Paeniclostridium sordellii toxin TcsL. Cell Host Microbe 27, 782–792 e787 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, S. et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 16, e2006951 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Xiong, X. et al. Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell 185, 1157–1171 e1122 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. et al. CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor. Nature 610, 349–355 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, S. et al. Proteomic analysis identifies membrane proteins dependent on the ER membrane protein complex. Cell Rep. 28, 2517–2526 e2515 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

Article  CAS  PubMed  Google Scholar 

Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

Article  CAS  PubMed  Google Scholar 

Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).

Article  CAS  PubMed  Google Scholar 

Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).

Article  CAS  PubMed  Google Scholar 

Stark, G. R. & Gudkov, A. V. Forward genetics in mammalian cells: functional approaches to gene discovery. Hum. Mol. Genet. 8, 1925–1938 (1999).

Article  CAS  PubMed  Google Scholar 

Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piccioni, F., Younger, S. T. & Root, D. E. Pooled lentiviral-delivery genetic screens. Curr. Protoc. Mol. Biol. 121, 32 31 31–32 31 21 (2018).

Article  Google Scholar 

留言 (0)

沒有登入
gif