Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, et al. acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194:265–75. https://doi.org/10.1164/rccm.201604-0801CI.
Article PubMed CAS Google Scholar
Leuschner G, Behr J. Acute exacerbation in interstitial lung disease. Front Med. 2017;4:176. https://doi.org/10.3389/fmed.2017.00176.
Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP. Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res. 2006;323:475–88. https://doi.org/10.1007/s00441-005-0069-0.
Article PubMed CAS Google Scholar
Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol. 2008;172:583–91. https://doi.org/10.2353/ajpath.2008.070569.
Article PubMed PubMed Central CAS Google Scholar
Izushi Y, Teshigawara K, Liu K, Wang D, Wake H, Takata K, et al. Soluble form of the receptor for advanced glycation end-products attenuates inflammatory pathogenesis in a rat model of lipopolysaccharide-induced lung injury. J Pharmacol Sci. 2016;130:226–34. https://doi.org/10.1016/j.jphs.2016.02.005.
Article PubMed CAS Google Scholar
Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, et al. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7:7208. https://doi.org/10.1038/s41598-017-07638-2.
Article PubMed PubMed Central CAS Google Scholar
Araki K, Kinoshita R, Tomonobu N, Gohara Y, Tomida S, Takahashi Y, et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med. 2021;99:131–45. https://doi.org/10.1007/s00109-020-02001-x.
Article PubMed CAS Google Scholar
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, et al. Serum high-mobility group box 1 is associated with the onset and severity of acute exacerbation of idiopathic pulmonary fibrosis. Respirology. 2020;25:275–80. https://doi.org/10.1111/resp.13634.
Tanaka K, Enomoto N, Hozumi H, Isayama T, Naoi H, Aono Y, et al. Serum S100A8 and S100A9 as prognostic biomarkers in acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig. 2021;59:827–36. https://doi.org/10.1016/j.resinv.2021.05.008.
Article PubMed CAS Google Scholar
Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis. 2008;196:9–21. https://doi.org/10.1016/j.atherosclerosis.2007.07.025.
Article PubMed CAS Google Scholar
Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med. 1998;4:1025–31. https://doi.org/10.1038/2012.
Article PubMed CAS Google Scholar
Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097–109. https://doi.org/10.1042/BJ20021371.
Article PubMed PubMed Central CAS Google Scholar
Yamaguchi K, Iwamoto H, Horimasu Y, Ohshimo S, Fujitaka K, Hamada H, et al. AGER gene polymorphisms and soluble receptor for advanced glycation end product in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22:965–71. https://doi.org/10.1111/resp.12995.
Manichaikul A, Sun L, Borczuk AC, Onengut-Gumuscu S, Farber EA, Mathai SK, et al. Plasma soluble receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:628–35. https://doi.org/10.1513/AnnalsATS.201606-485OC.
Article PubMed PubMed Central Google Scholar
Machahua C, Montes-Worboys A, Planas-Cerezales L, Buendia-Flores R, Molina-Molina M, Vicens-Zygmunt V. Serum AGE/RAGEs as potential biomarker in idiopathic pulmonary fibrosis. Respir Res. 2018;19:215. https://doi.org/10.1186/s12931-018-0924-7.
Article PubMed PubMed Central CAS Google Scholar
Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, et al. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 2002;3:123–35. https://doi.org/10.1038/sj.gene.6363861.
Article PubMed CAS Google Scholar
Kinjo T, Kitaguchi Y, Droma Y, Yasuo M, Wada Y, Ueno F, et al. The Gly82Ser mutation in AGER contributes to pathogenesis of pulmonary fibrosis in combined pulmonary fibrosis and emphysema (CPFE) in Japanese patients. Sci Rep. 2020;10:12811. https://doi.org/10.1038/s41598-020-69184-8.
Article PubMed PubMed Central CAS Google Scholar
Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–68. https://doi.org/10.1164/rccm.201807-1255ST.
Hiyama E, Yokohama T, Hiyama K, Yamakido M, Santo T, Kodama T, et al. Alteration of telomeric repeat length in adult and childhood solid neoplasias. Int J Oncol. 1995;6:13–6. https://doi.org/10.3892/ijo.6.1.13.
Article PubMed CAS Google Scholar
Nakao S, Yamaguchi K, Iwamoto H, Kagimoto A, Mimae T, Tsutani Y, et al. Role of soluble receptor for advanced glycation end products in postoperative fibrotic lung injury. Ann Thorac Surg. 2022;113:1617–23. https://doi.org/10.1016/j.athoracsur.2021.05.059.
Yamaguchi K, Iwamoto H, Mazur W, Miura S, Sakamoto S, Horimasu Y, et al. Reduced endogenous secretory RAGE in blood and bronchoalveolar lavage fluid is associated with poor prognosis in idiopathic pulmonary fibrosis. Respir Res. 2020;21:145. https://doi.org/10.1186/s12931-020-01410-3.
Article PubMed PubMed Central CAS Google Scholar
Keefe J, Yao C, Hwang SJ, Courchesne P, Lee GY, Dupuis J, et al. An integrative genomic strategy identifies sRAGE as a causal and protective biomarker of lung function. Chest. 2022;161:76–84. https://doi.org/10.1016/j.chest.2021.06.053.
Article PubMed CAS Google Scholar
Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J. 2011;37:356–63. https://doi.org/10.1183/09031936.00159709.
Article PubMed CAS Google Scholar
Mura M, Porretta MA, Bargagli E, Sergiacomi G, Zompatori M, Sverzellati N, et al. Predicting survival in newly diagnosed idiopathic pulmonary fibrosis: a 3-year prospective study. Eur Respir J. 2012;40:101–9. https://doi.org/10.1183/09031936.00106011.
Costabel U, Inoue Y, Richeldi L, Collard HR, Tschoepe I, Stowasser S, et al. Efficacy of nintedanib in idiopathic pulmonary fibrosis across prespecified subgroups in INPULSIS. Am J Respir Crit Care Med. 2016;193:178–85. https://doi.org/10.1164/rccm.201503-0562OC.
Article PubMed CAS Google Scholar
Ohlmeier S, Mazur W, Salmenkivi K, Myllärniemi M, Bergmann U, Kinnula VL. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Proteom Clin Appl. 2010;4:97–105. https://doi.org/10.1002/prca.200900128. (Epub 2010 Jan 7).
Peljto AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA. 2013;309:2232–9. https://doi.org/10.1001/jama.2013.5827.
留言 (0)