Serum soluble isoform of receptor for advanced glycation end product is a predictive biomarker for acute exacerbation of idiopathic pulmonary fibrosis: a German and Japanese cohort study

Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, et al. acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194:265–75. https://doi.org/10.1164/rccm.201604-0801CI.

Article  PubMed  CAS  Google Scholar 

Leuschner G, Behr J. Acute exacerbation in interstitial lung disease. Front Med. 2017;4:176. https://doi.org/10.3389/fmed.2017.00176.

Article  Google Scholar 

Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP. Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res. 2006;323:475–88. https://doi.org/10.1007/s00441-005-0069-0.

Article  PubMed  CAS  Google Scholar 

Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol. 2008;172:583–91. https://doi.org/10.2353/ajpath.2008.070569.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Izushi Y, Teshigawara K, Liu K, Wang D, Wake H, Takata K, et al. Soluble form of the receptor for advanced glycation end-products attenuates inflammatory pathogenesis in a rat model of lipopolysaccharide-induced lung injury. J Pharmacol Sci. 2016;130:226–34. https://doi.org/10.1016/j.jphs.2016.02.005.

Article  PubMed  CAS  Google Scholar 

Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, et al. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7:7208. https://doi.org/10.1038/s41598-017-07638-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Araki K, Kinoshita R, Tomonobu N, Gohara Y, Tomida S, Takahashi Y, et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med. 2021;99:131–45. https://doi.org/10.1007/s00109-020-02001-x.

Article  PubMed  CAS  Google Scholar 

Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, et al. Serum high-mobility group box 1 is associated with the onset and severity of acute exacerbation of idiopathic pulmonary fibrosis. Respirology. 2020;25:275–80. https://doi.org/10.1111/resp.13634.

Article  PubMed  Google Scholar 

Tanaka K, Enomoto N, Hozumi H, Isayama T, Naoi H, Aono Y, et al. Serum S100A8 and S100A9 as prognostic biomarkers in acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig. 2021;59:827–36. https://doi.org/10.1016/j.resinv.2021.05.008.

Article  PubMed  CAS  Google Scholar 

Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis. 2008;196:9–21. https://doi.org/10.1016/j.atherosclerosis.2007.07.025.

Article  PubMed  CAS  Google Scholar 

Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med. 1998;4:1025–31. https://doi.org/10.1038/2012.

Article  PubMed  CAS  Google Scholar 

Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097–109. https://doi.org/10.1042/BJ20021371.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yamaguchi K, Iwamoto H, Horimasu Y, Ohshimo S, Fujitaka K, Hamada H, et al. AGER gene polymorphisms and soluble receptor for advanced glycation end product in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22:965–71. https://doi.org/10.1111/resp.12995.

Article  PubMed  Google Scholar 

Manichaikul A, Sun L, Borczuk AC, Onengut-Gumuscu S, Farber EA, Mathai SK, et al. Plasma soluble receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:628–35. https://doi.org/10.1513/AnnalsATS.201606-485OC.

Article  PubMed  PubMed Central  Google Scholar 

Machahua C, Montes-Worboys A, Planas-Cerezales L, Buendia-Flores R, Molina-Molina M, Vicens-Zygmunt V. Serum AGE/RAGEs as potential biomarker in idiopathic pulmonary fibrosis. Respir Res. 2018;19:215. https://doi.org/10.1186/s12931-018-0924-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, et al. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 2002;3:123–35. https://doi.org/10.1038/sj.gene.6363861.

Article  PubMed  CAS  Google Scholar 

Kinjo T, Kitaguchi Y, Droma Y, Yasuo M, Wada Y, Ueno F, et al. The Gly82Ser mutation in AGER contributes to pathogenesis of pulmonary fibrosis in combined pulmonary fibrosis and emphysema (CPFE) in Japanese patients. Sci Rep. 2020;10:12811. https://doi.org/10.1038/s41598-020-69184-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–68. https://doi.org/10.1164/rccm.201807-1255ST.

Article  PubMed  Google Scholar 

Hiyama E, Yokohama T, Hiyama K, Yamakido M, Santo T, Kodama T, et al. Alteration of telomeric repeat length in adult and childhood solid neoplasias. Int J Oncol. 1995;6:13–6. https://doi.org/10.3892/ijo.6.1.13.

Article  PubMed  CAS  Google Scholar 

Nakao S, Yamaguchi K, Iwamoto H, Kagimoto A, Mimae T, Tsutani Y, et al. Role of soluble receptor for advanced glycation end products in postoperative fibrotic lung injury. Ann Thorac Surg. 2022;113:1617–23. https://doi.org/10.1016/j.athoracsur.2021.05.059.

Article  PubMed  Google Scholar 

Yamaguchi K, Iwamoto H, Mazur W, Miura S, Sakamoto S, Horimasu Y, et al. Reduced endogenous secretory RAGE in blood and bronchoalveolar lavage fluid is associated with poor prognosis in idiopathic pulmonary fibrosis. Respir Res. 2020;21:145. https://doi.org/10.1186/s12931-020-01410-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Keefe J, Yao C, Hwang SJ, Courchesne P, Lee GY, Dupuis J, et al. An integrative genomic strategy identifies sRAGE as a causal and protective biomarker of lung function. Chest. 2022;161:76–84. https://doi.org/10.1016/j.chest.2021.06.053.

Article  PubMed  CAS  Google Scholar 

Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J. 2011;37:356–63. https://doi.org/10.1183/09031936.00159709.

Article  PubMed  CAS  Google Scholar 

Mura M, Porretta MA, Bargagli E, Sergiacomi G, Zompatori M, Sverzellati N, et al. Predicting survival in newly diagnosed idiopathic pulmonary fibrosis: a 3-year prospective study. Eur Respir J. 2012;40:101–9. https://doi.org/10.1183/09031936.00106011.

Article  PubMed  Google Scholar 

Costabel U, Inoue Y, Richeldi L, Collard HR, Tschoepe I, Stowasser S, et al. Efficacy of nintedanib in idiopathic pulmonary fibrosis across prespecified subgroups in INPULSIS. Am J Respir Crit Care Med. 2016;193:178–85. https://doi.org/10.1164/rccm.201503-0562OC.

Article  PubMed  CAS  Google Scholar 

Ohlmeier S, Mazur W, Salmenkivi K, Myllärniemi M, Bergmann U, Kinnula VL. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Proteom Clin Appl. 2010;4:97–105. https://doi.org/10.1002/prca.200900128. (Epub 2010 Jan 7).

Article  CAS  Google Scholar 

Peljto AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA. 2013;309:2232–9. https://doi.org/10.1001/jama.2013.5827.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif