Prajapati BG, Bhattacharya S. Editorial: Biomedical nanotechnology in cancer diagnostics and treatment. Front Nanotechnol. 2023. https://doi.org/10.3389/fnano.2023.1208544.
Kopeček J. Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev. 2013;65(1):49–59. https://doi.org/10.1016/j.addr.2012.10.014.
Article PubMed CAS Google Scholar
Pang X, Du H-L, Zhang H-Q, Zhai Y-J, Zhai G-X. Polymer–drug conjugates: present state of play and future perspectives. Drug Discov Today. 2013;18(23–24):1316–22. https://doi.org/10.1016/j.drudis.2013.09.007.
Article PubMed CAS Google Scholar
Ringsdorf H. Sturcture and properties of pharmacologically active polymers. J Polym Sci C Polym Symp. 1975;51:135–53.
Manandhar S, Sjöholm E, Bobacka J, Rosenholm JM, Bansal KK. Polymer-drug conjugates as nanotheranostic agents. J Nanotheranostics. 2021;2(1):63–81. https://doi.org/10.3390/jnt2010005.
Jones T, Saba N. Nanotechnology and drug delivery: an update in oncology. Pharmaceutics. 2011;3(2):171–85. https://doi.org/10.3390/pharmaceutics3020171.
Article PubMed PubMed Central CAS Google Scholar
Li-Wan-Po A. Pharmacogenetics and personalized medicine. J Clin Pharm Ther. 2012;37(6):617–9. https://doi.org/10.1111/jcpt.12010.
Article PubMed CAS Google Scholar
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017. https://doi.org/10.1038/natrevmats.2017.24.
Article PubMed PubMed Central Google Scholar
Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: Recent progress in cancer therapy. Theranostics. 2016;6(9):1362–77. https://doi.org/10.7150/thno.15335.
Article PubMed PubMed Central CAS Google Scholar
Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. Polym Adv Technol. 2013;24(9):777–90. https://doi.org/10.1002/pat.3158.
Kalita H, Patowary M. Biocompatible polymer nano-constructs: A potent platform for cancer theranostics. Technol Cancer Res Treat. 2023;22:153303382311603. https://doi.org/10.1177/15330338231160391.
Liu Y, Yuan H, Fales AM, Register JK, Vo-Dinh T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem. 2015. https://doi.org/10.3389/fchem.2015.00051.
Article PubMed PubMed Central Google Scholar
Kumar A, Mastren T, Wang B, Hsieh J-T, Hao G, Sun X. Design of a small-molecule drug conjugate for prostate cancer targeted theranostics. Bioconjug Chem. 2016;27(7):1681–9. https://doi.org/10.1021/acs.bioconjchem.6b00222.
Article PubMed CAS Google Scholar
Yi Q, Ma J, Kang K, Gu Z. Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine. 2018;13:653–67. https://doi.org/10.2147/ijn.s149458.
Article PubMed PubMed Central CAS Google Scholar
Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody–drug conjugate payloads; study of auristatin derivatives. Chem Pharm Bull (Tokyo). 2020;68(3):201–11. https://doi.org/10.1248/cpb.c19-00853.
Article PubMed CAS Google Scholar
Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 2006;17(1):114–24. https://doi.org/10.1021/bc0502917.
Article PubMed CAS Google Scholar
Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41. https://doi.org/10.1586/erm.09.15.
Article PubMed PubMed Central Google Scholar
Chatterjee M, Maity R, Das S, Mahata N, Basu B, Chanda N. Electrospray-based synthesis of fluorescent poly(d, l-lactide-co-glycolide) nanoparticles for the efficient delivery of an anticancer drug and self-monitoring its effect in drug-resistant breast cancer cells. Mater Adv. 2020;1(8):3033–48. https://doi.org/10.1039/d0ma00646g.
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt Chem. 2016;80:30–40. https://doi.org/10.1016/j.trac.2015.06.014.
Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 2007;6(2):404–17. https://doi.org/10.1158/1535-7163.mct-06-0343.
Article PubMed CAS Google Scholar
Vllasaliu D, Casettari L, Bonacucina G, Cespi M, Palmieri G, Illum L. Folic acid conjugated chitosan nanoparticles for tumor targeting of therapeutic and imaging agents. Pharm Nanotechnol. 2013;1(3):184–203. https://doi.org/10.2174/22117385113019990001.
Hu X, Wang R, Yue J, Liu S, Xie Z, Jing X. Targeting and anti-tumor effect of folic acid-labeled polymer–doxorubicin conjugates with pH-sensitive hydrazone linker. J Mater Chem. 2012;22(26):13303. https://doi.org/10.1039/c2jm31130e.
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014. https://doi.org/10.3389/fphar.2014.00077.
Article PubMed PubMed Central Google Scholar
Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404–24. https://doi.org/10.1002/ddr.21545.
Article PubMed CAS Google Scholar
Parashar AK. Synthesis and characterization of ligand anchored poly propyleneiminedendrimers for the treatment of brain glioma. J Med Pharm Allied Sci. 2021;10(3):2784–9. https://doi.org/10.22270/jmpas.v10i3.1084.
Li J, Cai C, Li J, Li J, Li J, Sun T, et al. Chitosan-based nanomaterials for drug delivery. Molecules. 2018;23(10):2661. https://doi.org/10.3390/molecules23102661.
Article PubMed PubMed Central CAS Google Scholar
Wu B, Zhao N. A targeted nanoprobe based on carbon nanotubes-natural biopolymer chitosan composites. Nanomaterials (Basel). 2016;6(11):216. https://doi.org/10.3390/nano6110216.
Article PubMed CAS Google Scholar
Nayak TR, Zhang Y, Cai W. Cancer theranostics with carbon-based nanoplatforms. Cancer Theranostics. 2014. https://doi.org/10.1016/B978-0-12-407722-5.00019-0.
Ji J, Zuo P, Wang Y-L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res Lett. 2015. https://doi.org/10.1186/s11671-015-1162-2.
Article PubMed PubMed Central Google Scholar
Fitzpatrick SD, Fitzpatrick LE, Thakur A, Mazumder MAJ, Sheardown H. Temperature-sensitive polymers for drug delivery. Expert Rev Med Dev. 2012;9(4):339–51. https://doi.org/10.1586/erd.12.24.
Baipaywad P, Ryu N, Im S-S, Lee U, Son HB, Kim WJ, et al. Fac
留言 (0)