Polymer-drug conjugates: revolutionizing nanotheranostic agents for diagnosis and therapy

Prajapati BG, Bhattacharya S. Editorial: Biomedical nanotechnology in cancer diagnostics and treatment. Front Nanotechnol. 2023. https://doi.org/10.3389/fnano.2023.1208544.

Article  Google Scholar 

Kopeček J. Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev. 2013;65(1):49–59. https://doi.org/10.1016/j.addr.2012.10.014.

Article  PubMed  CAS  Google Scholar 

Pang X, Du H-L, Zhang H-Q, Zhai Y-J, Zhai G-X. Polymer–drug conjugates: present state of play and future perspectives. Drug Discov Today. 2013;18(23–24):1316–22. https://doi.org/10.1016/j.drudis.2013.09.007.

Article  PubMed  CAS  Google Scholar 

Ringsdorf H. Sturcture and properties of pharmacologically active polymers. J Polym Sci C Polym Symp. 1975;51:135–53.

Article  CAS  Google Scholar 

Manandhar S, Sjöholm E, Bobacka J, Rosenholm JM, Bansal KK. Polymer-drug conjugates as nanotheranostic agents. J Nanotheranostics. 2021;2(1):63–81. https://doi.org/10.3390/jnt2010005.

Article  Google Scholar 

Jones T, Saba N. Nanotechnology and drug delivery: an update in oncology. Pharmaceutics. 2011;3(2):171–85. https://doi.org/10.3390/pharmaceutics3020171.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li-Wan-Po A. Pharmacogenetics and personalized medicine. J Clin Pharm Ther. 2012;37(6):617–9. https://doi.org/10.1111/jcpt.12010.

Article  PubMed  CAS  Google Scholar 

Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017. https://doi.org/10.1038/natrevmats.2017.24.

Article  PubMed  PubMed Central  Google Scholar 

Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: Recent progress in cancer therapy. Theranostics. 2016;6(9):1362–77. https://doi.org/10.7150/thno.15335.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. Polym Adv Technol. 2013;24(9):777–90. https://doi.org/10.1002/pat.3158.

Article  CAS  Google Scholar 

Kalita H, Patowary M. Biocompatible polymer nano-constructs: A potent platform for cancer theranostics. Technol Cancer Res Treat. 2023;22:153303382311603. https://doi.org/10.1177/15330338231160391.

Article  CAS  Google Scholar 

Liu Y, Yuan H, Fales AM, Register JK, Vo-Dinh T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem. 2015. https://doi.org/10.3389/fchem.2015.00051.

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Mastren T, Wang B, Hsieh J-T, Hao G, Sun X. Design of a small-molecule drug conjugate for prostate cancer targeted theranostics. Bioconjug Chem. 2016;27(7):1681–9. https://doi.org/10.1021/acs.bioconjchem.6b00222.

Article  PubMed  CAS  Google Scholar 

Yi Q, Ma J, Kang K, Gu Z. Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine. 2018;13:653–67. https://doi.org/10.2147/ijn.s149458.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody–drug conjugate payloads; study of auristatin derivatives. Chem Pharm Bull (Tokyo). 2020;68(3):201–11. https://doi.org/10.1248/cpb.c19-00853.

Article  PubMed  CAS  Google Scholar 

Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 2006;17(1):114–24. https://doi.org/10.1021/bc0502917.

Article  PubMed  CAS  Google Scholar 

Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41. https://doi.org/10.1586/erm.09.15.

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee M, Maity R, Das S, Mahata N, Basu B, Chanda N. Electrospray-based synthesis of fluorescent poly(d, l-lactide-co-glycolide) nanoparticles for the efficient delivery of an anticancer drug and self-monitoring its effect in drug-resistant breast cancer cells. Mater Adv. 2020;1(8):3033–48. https://doi.org/10.1039/d0ma00646g.

Article  CAS  Google Scholar 

Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt Chem. 2016;80:30–40. https://doi.org/10.1016/j.trac.2015.06.014.

Article  CAS  Google Scholar 

Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 2007;6(2):404–17. https://doi.org/10.1158/1535-7163.mct-06-0343.

Article  PubMed  CAS  Google Scholar 

Vllasaliu D, Casettari L, Bonacucina G, Cespi M, Palmieri G, Illum L. Folic acid conjugated chitosan nanoparticles for tumor targeting of therapeutic and imaging agents. Pharm Nanotechnol. 2013;1(3):184–203. https://doi.org/10.2174/22117385113019990001.

Article  CAS  Google Scholar 

Hu X, Wang R, Yue J, Liu S, Xie Z, Jing X. Targeting and anti-tumor effect of folic acid-labeled polymer–doxorubicin conjugates with pH-sensitive hydrazone linker. J Mater Chem. 2012;22(26):13303. https://doi.org/10.1039/c2jm31130e.

Article  CAS  Google Scholar 

Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014. https://doi.org/10.3389/fphar.2014.00077.

Article  PubMed  PubMed Central  Google Scholar 

Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80(4):404–24. https://doi.org/10.1002/ddr.21545.

Article  PubMed  CAS  Google Scholar 

Parashar AK. Synthesis and characterization of ligand anchored poly propyleneiminedendrimers for the treatment of brain glioma. J Med Pharm Allied Sci. 2021;10(3):2784–9. https://doi.org/10.22270/jmpas.v10i3.1084.

Article  Google Scholar 

Li J, Cai C, Li J, Li J, Li J, Sun T, et al. Chitosan-based nanomaterials for drug delivery. Molecules. 2018;23(10):2661. https://doi.org/10.3390/molecules23102661.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu B, Zhao N. A targeted nanoprobe based on carbon nanotubes-natural biopolymer chitosan composites. Nanomaterials (Basel). 2016;6(11):216. https://doi.org/10.3390/nano6110216.

Article  PubMed  CAS  Google Scholar 

Nayak TR, Zhang Y, Cai W. Cancer theranostics with carbon-based nanoplatforms. Cancer Theranostics. 2014. https://doi.org/10.1016/B978-0-12-407722-5.00019-0.

Article  Google Scholar 

Ji J, Zuo P, Wang Y-L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res Lett. 2015. https://doi.org/10.1186/s11671-015-1162-2.

Article  PubMed  PubMed Central  Google Scholar 

Fitzpatrick SD, Fitzpatrick LE, Thakur A, Mazumder MAJ, Sheardown H. Temperature-sensitive polymers for drug delivery. Expert Rev Med Dev. 2012;9(4):339–51. https://doi.org/10.1586/erd.12.24.

Article  CAS  Google Scholar 

Baipaywad P, Ryu N, Im S-S, Lee U, Son HB, Kim WJ, et al. Fac

留言 (0)

沒有登入
gif