Li ZH, Wang YL, Wang HJ, Wu JH, Tan YZ. Rapamycin-preactivated autophagy enhances survival and differentiation of mesenchymal stem cells after transplantation into infarcted myocardium. Stem Cell Rev Rep. 2020;16(2):344–56.
Article PubMed PubMed Central CAS Google Scholar
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev. 2024;104(2):659–725.
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev. 2023;89: 101980.
Article PubMed CAS Google Scholar
Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, Hwang JW, Lee S, Kim HJ, Kim HY, Jung S, Cho DW, Jang J, Ban K, Park HJ. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6(13): eaay6994.
Article PubMed PubMed Central CAS Google Scholar
Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.
Shan S, Liu Z, Guo T, Wang M, Tian S, Zhang Y, Wang K, Zheng H, Zhao X, Zuo P, Wang Y, Li D, Liu C. Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys. 2018;660:108–20.
Article PubMed CAS Google Scholar
Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J, Zhang G, Suntharalingam P, Boozer S, Mhashilkar A, Panetta CJ, Swingen C, Deans R, From AH, Bache RJ, Verfaillie CM, Zhang J. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 2007;115(14):1866–75.
Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27(9):1114–22.
Chen G, Liang X, Han Q, Mai C, Shi L, Shao Z, Hong Y, Lin F, Li M, Hu B, Li X, Zhang Y. Apelin-13 pretreatment promotes the cardioprotective effect of mesenchymal stem cells against myocardial infarction by improving their survival. Stem Cells Int. 2022;2022:3742678.
Article PubMed PubMed Central Google Scholar
Li H, Hu D, Chen G, Zheng D, Li S, Lin Y, Hong H, Luo Y, Ke Y, Huang Y, Wu L, Lan T, Wang W, Fang J. Adropin-based dual treatment enhances the therapeutic potential of mesenchymal stem cells in rat myocardial infarction. Cell Death Dis. 2021;12(6):505.
Article PubMed PubMed Central CAS Google Scholar
Pittenger MF, Eghtesad S, Sanchez PG, Liu X, Wu Z, Chen L, Griffith BP. MSC pretreatment for improved transplantation viability results in improved ventricular function in infarcted hearts. Int J Mol Sci. 2022;23(2):694.
Article PubMed PubMed Central CAS Google Scholar
Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, Ning Y, Huang P, Xu J, Chen G, Li X, Hu M, Xu J, Wu C, Jin C, Li X, Qian H, Yang Y. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther. 2022;13(1):289.
Article PubMed PubMed Central CAS Google Scholar
Deng R, Liu Y, He H, Zhang H, Zhao C, Cui Z, Hong Y, Li X, Lin F, Yuan D, Liang X, Zhang Y. Haemin pre-treatment augments the cardiac protection of mesenchymal stem cells by inhibiting mitochondrial fission and improving survival. J Cell Mol Med. 2020;24(1):431–40.
Article PubMed CAS Google Scholar
Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013;24(4):373–84.
Article PubMed CAS Google Scholar
Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C, Liu Y. Growth differentiation factor 15 protects SH-SY5Y cells from rotenone-induced toxicity by suppressing mitochondrial apoptosis. Front Aging Neurosci. 2022;14: 869558.
Article PubMed PubMed Central CAS Google Scholar
Tiwari KK, Moorthy B, Lingappan K. Role of GDF15 (growth and differentiation factor 15) in pulmonary oxygen toxicity. Toxicol In Vitro. 2015;29(7):1369–76.
Article PubMed PubMed Central CAS Google Scholar
Wang S, Li M, Zhang W, Hua H, Wang N, Zhao J, Ge J, Jiang X, Zhang Z, Ye D, Yang C. Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Sci Rep. 2017;7(1):9027.
Article PubMed PubMed Central Google Scholar
Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and cardiac cells: current concepts and new insights. Int J Mol Sci. 2021;22(16):8889.
Article PubMed PubMed Central CAS Google Scholar
Zhang Y, Liang X, Liao S, Wang W, Wang J, Li X, Ding Y, Liang Y, Gao F, Yang M, Fu Q, Xu A, Chai YH, He J, Tse HF, Lian Q. Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Sci Rep. 2015;5:11235.
Article PubMed PubMed Central CAS Google Scholar
Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, Hewett TE, Breit SN, Molkentin JD. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98(3):342–50.
Article PubMed CAS Google Scholar
Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B, Kanwischer A, Bavendiek U, Beutel G, Hapke M, Sauer MG, Laudanna C, Hogg N, Vestweber D, Wollert KC. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–8.
Article PubMed CAS Google Scholar
Liang X, Ding Y, Lin F, Zhang Y, Zhou X, Meng Q, Lu X, Jiang G, Zhu H, Chen Y, Lian Q, Fan H, Liu Z. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. Faseb j. 2019;33(3):4559–70.
Article PubMed CAS Google Scholar
Amado CA, Martín-Audera P, Agüero J, Ferrer-Pargada D, Josa Laorden B, Boucle D, Berja A, Lavín BA, Guerra AR, Ghadban C, Muñoz P, García-Unzueta M. Alterations in circulating mitochondrial signals at hospital admission for COPD exacerbation. Chron Respir Dis. 2023;20:14799731231220058.
Article PubMed PubMed Central Google Scholar
Yang W, Xia F, Mei F, Shi S, Robichaux WG 3rd, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 promotes pericyte loss by inducing mitochondrial fission, reactive oxygen species production, and apoptosis. Invest Ophthalmol Vis Sci. 2023;64(11):34.
Article PubMed PubMed Central Google Scholar
Nishimura A, Zhou L, Kato Y, Mi X, Ito T, Ibuki Y, Kanda Y, Nishida M. Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation. J Pharmacol Sci. 2024;154(2):127–35.
Article PubMed CAS Google Scholar
Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol. 2006;47(9):1777–85.
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: mesenchymal stem cells and induced pluripotent stem cells. Expert Opin Biol Ther. 2023;23(10):951–67.
Article PubMed PubMed Central CAS Google Scholar
Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, Talaat KA, Ashaal AE, El-Shal AS. Mesenchymal stem cell therapy: a promising c
留言 (0)