Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit Care Med. 2014;42:520–7.
Article CAS PubMed Google Scholar
De Rosa S, Battaglini D, Robba C. Kidney dysfunction after acute brain injury. Nephrol Dial Transplant. 2023;39:gfad192.
May CC, Arora S, Parli SE, Fraser JF, Bastin MT, Cook AM. Augmented renal clearance in patients with subarachnoid hemorrhage. Neurocrit Care. 2015;23:374–9.
Article CAS PubMed Google Scholar
Morbitzer KA, Jordan JD, Dehne KA, Durr EA, Olm-Shipman CM, Rhoney DH. Enhanced renal clearance in patients with hemorrhagic stroke. Crit Care Med. 2019;47:800–8.
Article CAS PubMed Google Scholar
Udy AA, Jarrett P, Stuart J, Lassig-Smith M, Starr T, Dunlop R, et al. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds. Crit Care. 2014;18:657.
Article PubMed PubMed Central Google Scholar
Morbitzer KA, Rhoney DH, Dehne KA, Jordan JD. Enhanced renal clearance and impact on vancomycin pharmacokinetic parameters in patients with hemorrhagic stroke. J Intensive Care. 2019;7:51.
Article PubMed PubMed Central Google Scholar
Sime FB, Roberts JA, Jeffree RL, Pandey S, Adiraju S, Livermore A, et al. Population pharmacokinetics of levetiracetam in patients with traumatic brain injury and subarachnoid hemorrhage exhibiting augmented renal clearance. Clin Pharmacokinet. 2021;60:655–64.
Article CAS PubMed Google Scholar
Hobbs ALV, Shea KM, Roberts KM, Daley MJ. Implications of augmented renal clearance on drug dosing in critically Ill patients: a focus on antibiotics. Pharmacother J Hum Pharmacol Drug Ther. 2015;35:1063–75.
Carrie C, Lannou A, Rubin S, De Courson H, Petit L, Biais M. Augmented renal clearance in critically ill trauma patients: a pathophysiologic approach using renal vascular index. Anaesth Crit Care Pain Med. 2019;38:371–5.
Beunders R, Schütz MJ, van Groenendael R, Leijte GP, Kox M, van Eijk LT, et al. Endotoxemia-induced release of pro-inflammatory mediators are associated with increased glomerular filtration rate in humans in vivo. Front Med. 2020;7: 559671.
Doig GS, Simpson F, Bellomo R, Heighes PT, Sweetman EA, Chesher D, et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med. 2015;41:1197–208.
Article CAS PubMed Google Scholar
De Waele JJ, Dumoulin A, Janssen A, Hoste EA. Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol. 2015;81:1079–85.
Kreymann KG, Berger MM, Deutz NEP, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–23.
Article CAS PubMed Google Scholar
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963.
Article CAS PubMed Google Scholar
Akaike H. Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson NL, editors. Breakthr Stat [Internet]. New York, NY: Springer New York; 1992 [cited 2024 Jun 12]. p. 610–24. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-4612-0919-5_38
Commenges D, Sayyareh A, Letenneur L, Guedj J, Bar-Hen A. Estimating a difference of Kullback-Leibler risks using a normalized difference of AIC. Ann Appl Stat. 2008. https://doi.org/10.1214/08-AOAS176.full.
Carrié C, Petit L, d’Houdain N, Sauvage N, Cottenceau V, Lafitte M, et al. Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of β-lactams administered by continuous infusion: a prospective observational study. Int J Antimicrob Agents. 2018;51:443–9.
Cook AM, Li D, Nestor MA, Bastin MLT. Prevalence and prediction of augmented renal clearance in the neurocritical care population. J Neurocritical Care. 2022;15:96–103.
Baptista JP, Martins PJ, Marques M, Pimentel JM. Prevalence and risk factors for augmented renal clearance in a population of critically Ill patients. J Intensive Care Med. 2020;35:1044–52.
Ronco C, Bellomo R, Kellum J. Understanding renal functional reserve. Intensive Care Med. 2017;43:917–20.
Lannou A, Carrie C, Rubin S, Cane G, Cottenceau V, Petit L, et al. Salt wasting syndrome in brain trauma patients: a pathophysiologic approach using sodium balance and urinary biochemical analysis. BMC Neurol. 2020;20:190.
Article CAS PubMed PubMed Central Google Scholar
Kim TJ, Park S-H, Jeong H-B, Ha EJ, Cho WS, Kang H-S, et al. Optimizing nitrogen balance is associated with better outcomes in neurocritically Ill patients. Nutrients. 2020;12:3137.
Article PubMed PubMed Central Google Scholar
Bosch JP, Lew S, Glabman S, Lauer A. Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am J Med. 1986;81:809–15.
Article CAS PubMed Google Scholar
Kim KE, Onesti G, Swartz C. Creatinine clearance and glomerular filtration rate. BMJ. 1972;1:379–80.
Article CAS PubMed PubMed Central Google Scholar
Hessels L, Koopmans N, Gomes Neto AW, Volbeda M, Koeze J, Lansink-Hartgring AO, et al. Urinary creatinine excretion is related to short-term and long-term mortality in critically ill patients. Intensive Care Med. 2018;44:1699–708.
Article CAS PubMed PubMed Central Google Scholar
Monteiro E, Fraga Pereira M, Barroso I, Dias CC, Czosnyka M, Paiva JA, et al. Creatinine Clearance in acute brain injury: a comparison of methods. Neurocrit Care. 2023;39:514–21.
Dickerson RN, Tidwell AC, Minard G, Croce MA, Brown RO. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support. Nutrition. 2005;21:332–8.
留言 (0)