Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport

Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).

Article  PubMed  CAS  Google Scholar 

Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Prigogine, I. & Nicolis, G. Biological order, structure and instabilities1. Q. Rev. Biophys. 4, 107–148 (1971).

Article  PubMed  CAS  Google Scholar 

van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

Article  PubMed  Google Scholar 

Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

Article  PubMed  CAS  Google Scholar 

Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

Article  PubMed  CAS  Google Scholar 

Heinen, L. & Walther, A. Celebrating Soft Matter’s 10th anniversary: approaches to program the time domain of self-assemblies. Soft Matter 11, 7857–7866 (2015).

Article  PubMed  CAS  Google Scholar 

van Rossum, S. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

Article  PubMed  Google Scholar 

Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

Article  PubMed  CAS  Google Scholar 

Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

Article  Google Scholar 

Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

Article  PubMed  CAS  Google Scholar 

Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

Article  PubMed  CAS  Google Scholar 

Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

Article  PubMed  CAS  Google Scholar 

Bal, S., Ghosh, C., Ghosh, T., Vijayaraghavan, R. K. & Das, D. Non‐equilibrium polymerization of cross‐β amyloid peptides for temporal control of electronic properties. Angew. Chem. Int. Ed. 58, 244–247 (2020).

Article  Google Scholar 

Wang, S., Yue, L., Wulf, V., Lilienthal, S. & Willner, I. Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions. J. Am. Chem. Soc. 142, 17480–17488 (2020).

Article  PubMed  CAS  Google Scholar 

Che, H., Cao, S. & van Hest, J. C. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 140, 5356–5359 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Späth, F. et al. Molecular design of chemically fueled peptide–polyelectrolyte coacervate-based assemblies. J. Am. Chem. Soc. 143, 4782–4789 (2021).

Article  PubMed  Google Scholar 

Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid–liquid phase separation. Chem 6, 3329–3343 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Giuseppone, N. & Walther, A. (eds) Out-of-Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021)

Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

Article  CAS  Google Scholar 

Wachtel, A., Rao, R. & Esposito, M. Free-energy transduction in chemical reaction networks: from enzymes to metabolism. J. Chem. Phys. 157, 024109 (2022).

Article  PubMed  CAS  Google Scholar 

Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

te Brinke, E. et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat. Nanotechnol. 13, 849–855 (2018).

Article  Google Scholar 

Cheng, G. & Perez-Mercader, J. Dissipative self-assembly of dynamic multicompartmentalized microsystems with light-responsive behaviors. Chem 6, 1160–1171 (2020).

Article  CAS  Google Scholar 

Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).

Article  PubMed  CAS  Google Scholar 

Hwang, I. et al. Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nat. Chem. 12, 808–813 (2020).

Article  PubMed  CAS  Google Scholar 

Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

Article  PubMed  CAS  Google Scholar 

Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol. 13, 114–121 (2003).

Article  PubMed  CAS  Google Scholar 

Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

Article  CAS  Google Scholar 

Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro‐ and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

Article  Google Scholar 

Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 12, 4686–4703 (2016).

Article  PubMed  CAS  Google Scholar 

Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

Article  PubMed  CAS  Google Scholar 

Hanczyc, M. M., Toyota, T., Ikegami, T., Packard, N. & Sugawara, T. Fatty acid chemistry at the oil–water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007).

Article  PubMed 

留言 (0)

沒有登入
gif