Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).
Article PubMed CAS Google Scholar
Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).
Article PubMed PubMed Central CAS Google Scholar
Prigogine, I. & Nicolis, G. Biological order, structure and instabilities1. Q. Rev. Biophys. 4, 107–148 (1971).
Article PubMed CAS Google Scholar
van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).
Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).
Article PubMed CAS Google Scholar
Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).
Article PubMed CAS Google Scholar
Heinen, L. & Walther, A. Celebrating Soft Matter’s 10th anniversary: approaches to program the time domain of self-assemblies. Soft Matter 11, 7857–7866 (2015).
Article PubMed CAS Google Scholar
van Rossum, S. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).
Article PubMed CAS Google Scholar
Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).
Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).
Article PubMed CAS Google Scholar
Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).
Article PubMed CAS Google Scholar
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).
Article PubMed PubMed Central CAS Google Scholar
Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).
Article PubMed CAS Google Scholar
Bal, S., Ghosh, C., Ghosh, T., Vijayaraghavan, R. K. & Das, D. Non‐equilibrium polymerization of cross‐β amyloid peptides for temporal control of electronic properties. Angew. Chem. Int. Ed. 58, 244–247 (2020).
Wang, S., Yue, L., Wulf, V., Lilienthal, S. & Willner, I. Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions. J. Am. Chem. Soc. 142, 17480–17488 (2020).
Article PubMed CAS Google Scholar
Che, H., Cao, S. & van Hest, J. C. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 140, 5356–5359 (2018).
Article PubMed PubMed Central CAS Google Scholar
Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).
Article PubMed PubMed Central CAS Google Scholar
Späth, F. et al. Molecular design of chemically fueled peptide–polyelectrolyte coacervate-based assemblies. J. Am. Chem. Soc. 143, 4782–4789 (2021).
Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid–liquid phase separation. Chem 6, 3329–3343 (2020).
Article PubMed PubMed Central CAS Google Scholar
Giuseppone, N. & Walther, A. (eds) Out-of-Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021)
Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).
Wachtel, A., Rao, R. & Esposito, M. Free-energy transduction in chemical reaction networks: from enzymes to metabolism. J. Chem. Phys. 157, 024109 (2022).
Article PubMed CAS Google Scholar
Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).
Article PubMed PubMed Central CAS Google Scholar
te Brinke, E. et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat. Nanotechnol. 13, 849–855 (2018).
Cheng, G. & Perez-Mercader, J. Dissipative self-assembly of dynamic multicompartmentalized microsystems with light-responsive behaviors. Chem 6, 1160–1171 (2020).
Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).
Article PubMed CAS Google Scholar
Hwang, I. et al. Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nat. Chem. 12, 808–813 (2020).
Article PubMed CAS Google Scholar
Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).
Article PubMed CAS Google Scholar
Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol. 13, 114–121 (2003).
Article PubMed CAS Google Scholar
Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).
Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro‐ and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).
Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 12, 4686–4703 (2016).
Article PubMed CAS Google Scholar
Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).
Article PubMed CAS Google Scholar
Hanczyc, M. M., Toyota, T., Ikegami, T., Packard, N. & Sugawara, T. Fatty acid chemistry at the oil–water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007).
留言 (0)