Zhang, L., Zhang, X. & Lu, G. Intramolecular band alignment and spin–orbit coupling in two-dimensional halide perovskites. J. Phys. Chem. Lett. 11, 6982–6989 (2020).
Article PubMed CAS Google Scholar
Crassous, J. et al. Materials for chiral light control. Nat. Rev. Mater. 8, 365–371 (2023).
Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).
Article PubMed PubMed Central CAS Google Scholar
Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).
Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Article PubMed CAS Google Scholar
Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).
Article PubMed PubMed Central Google Scholar
Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).
Article PubMed CAS Google Scholar
Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).
Article PubMed CAS Google Scholar
Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).
Article PubMed PubMed Central CAS Google Scholar
Jana, M. K. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba–Dresselhaus spin–orbit coupling. Nat. Commun. 11, 4699 (2020).
Article PubMed PubMed Central CAS Google Scholar
Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).
Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).
Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).
Article PubMed PubMed Central CAS Google Scholar
Tran, T. K. T. et al. Anionic ligand-induced chirality in perovskite nanoplatelets. Chem. Commun. 59, 1485–1488 (2023).
Long, G. et al. Perovskite metasurfaces with large superstructural chirality. Nat. Commun. 13, 1551 (2022).
Article PubMed PubMed Central CAS Google Scholar
Kim, H. et al. Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles. Adv. Sci. 9, e2104598 (2022).
Chen, G. et al. Nucleation-mediated growth of chiral 3D organic-inorganic perovskite single crystals. Nat. Chem. 15, 1581–1590 (2023).
Article PubMed CAS Google Scholar
Kim, Y. H. et al. The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands. Adv. Funct. Mater. 32, 2200454 (2022).
Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).
Article PubMed CAS Google Scholar
Reid, J. P. Open questions on the transfer of chirality. Commun. Chem. 4, 171 (2021).
Article PubMed PubMed Central Google Scholar
Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971, (2004).
Article PubMed CAS Google Scholar
Zhang, Y., Wang, Y. & Dai, W.-M. Efficient remote axial-to-central chirality transfer in enantioselective smi2-mediated reductive coupling of aldehydes with crotonates of atropisomeric 1-naphthamides. J. Org. Chem. 71, 2445–2455, (2006).
Article PubMed CAS Google Scholar
Ikai, T. et al. Control of one-handed helicity in polyacetylenes: impact of an extremely small amount of chiral substituents. J. Am. Chem. Soc. 145, 24862–24876 (2023).
Article PubMed PubMed Central CAS Google Scholar
Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).
Article PubMed CAS Google Scholar
Wang, Y. et al. Elucidation of the origin of chiral amplification in discrete molecular polyhedra. Nat. Commun. 9, 488 (2018).
Article PubMed PubMed Central Google Scholar
Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).
Wang, Y. B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).
Article PubMed CAS Google Scholar
Qin, T. et al. Atropselective syntheses of (−) and (+) rugulotrosin A utilizing point-to-axial chirality transfer. Nat. Chem. 7, 234–240 (2015).
Article PubMed PubMed Central CAS Google Scholar
Mahal, E., Mandal, S. C. & Pathak, B. Understanding the role of spacer cation in 2D layered halide perovskites to achieve stable perovskite solar cells. Mater. Adv. 3, 2464–2474 (2022).
Pham, M. T. et al. Strong Rashba–Dresselhaus effect in nonchiral 2D Ruddlesden–Popper perovskites. Adv. Optical Mater. 10, 2101232 (2021).
Sercel, P. C., Vardeny, Z. V. & Efros, A. L. Circular dichroism in non-chiral metal halide perovskites. Nanoscale 12, 18067–18078 (2020).
Article PubMed CAS Google Scholar
Lin, C. W. et al. Structure-dependent photoluminescence in low-dimensional ethylammonium, propylammonium, and butylammonium lead iodide perovskites. ACS Appl. Mater. Interfaces 12, 5008–5016 (2020).
Article PubMed CAS Google Scholar
Luo, B. et al. Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 123, 14239–14245 (2019).
Mao, L. et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. J. Am. Chem. Soc. 139, 11956–11963 (2017).
留言 (0)