Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Article CAS PubMed Google Scholar
Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).
Article CAS PubMed Google Scholar
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
Article CAS PubMed Google Scholar
Deniz, A. A. Networking and dynamic switches in biological condensates. Cell 181, 228–230 (2020).
Article CAS PubMed Google Scholar
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
Article CAS PubMed Google Scholar
Youn, J.-Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 (2018).
Article CAS PubMed Google Scholar
Millar, S. R. et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 14, 9036–9064 (2023).
Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).
Article CAS PubMed Google Scholar
Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 (2018).
Article CAS PubMed Google Scholar
Zhu, H., Tamura, T. & Hamachi, I. Chemical proteomics for subcellular proteome analysis. Curr. Opin. Chem. Biol. 48, 1–7 (2019).
Article CAS PubMed Google Scholar
Long, M. J. C., Zhao, Y. & Aye, Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem. Biol. 1, 42–55 (2020).
Article CAS PubMed Google Scholar
Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. USA 119, e2203027119 (2022).
Article CAS PubMed Google Scholar
Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).
Article CAS PubMed Google Scholar
Mishra, P. K. et al. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem. Sci. 13, 955–966 (2022).
Article CAS PubMed Google Scholar
Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).
Article CAS PubMed Google Scholar
Aydin, Y. & Coin, I. Genetically encoded crosslinkers to address protein-protein interactions. Protein Sci. 32, e4637 (2023).
Article CAS PubMed Google Scholar
Hu, W. et al. Genetically encoded residue-selective photo-crosslinker to capture protein–protein interactions in living cells. Chem 5, 2955–2968 (2019).
Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat. Methods 2, 261–267 (2005).
Article CAS PubMed Google Scholar
Yang, T. P., Li, X. M., Bao, X. C., Fung, Y. M. E. & Li, X. D. Photo-lysine captures proteins that bind lysine post-translational modifications. Nat. Chem. Biol. 12, 70–72 (2016).
Article CAS PubMed Google Scholar
Pham, N. D., Parker, R. B. & Kohler, J. J. Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 17, 90–101 (2013).
Article CAS PubMed Google Scholar
Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).
Article CAS PubMed Google Scholar
Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).
Article CAS PubMed Google Scholar
Vishwanath, S., Sukhwal, A., Sowdhamini, R. & Srinivasan, N. Specificity and stability of transient protein–protein interactions. Curr. Opin. Struct. Biol. 44, 77–86 (2017).
Article CAS PubMed Google Scholar
Huang, H., Lin, S., Garcia, B. A. & Zhao, Y. Quantitative proteomic analysis of histone modifications. Chem. Rev. 115, 2376–2418 (2015).
Article CAS PubMed Google Scholar
Moran Luengo, T., Mayer, M. P. & Rudiger, S. G. D. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends. Cell Biol. 29, 164–177 (2019).
Article CAS PubMed Google Scholar
You, K. et al. PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids Res. 48, D354–D359 (2020).
Article CAS PubMed Google Scholar
Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).
Article CAS PubMed Google Scholar
Hino, M., Kurogi, K., Okubo, M.-A., Murata-Hori, M. & Hosoya, H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem. Biophys. Res. Commun. 271, 164–169 (2000).
Article CAS PubMed Google Scholar
He, D. et al. Quantitative and comparative profiling of protease substrates through a genetically encoded multifunctional photocrosslinker. Angew. Chem. Int. Ed. 56, 14521–14525 (2017).
Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).
Article CAS PubMed Google Scholar
Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).
Article CAS PubMed Google Scholar
West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021).
Article CAS PubMed Google Scholar
Halloran, M. W. & Lumb, J. P. Recent applications of diazirines in chemical proteomics. Chem. Eur. J. 25, 4885–4898 (2019).
留言 (0)