Devaraj, N. K. In situ synthesis of phospholipid membranes. J. Org. Chem. 82, 5997–6005 (2017).
Article CAS PubMed Google Scholar
Dowhan, W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim. Biophys. Acta 1831, 471–494 (2013).
Article CAS PubMed Google Scholar
Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).
Article CAS PubMed Google Scholar
Deamer, D. The role of lipid membranes in life’s origin. Life 7, 5 (2017).
Article PubMed PubMed Central Google Scholar
Luisi, P. L., Walde, P. & Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4, 33–39 (1999).
Chen, I. A. & Walde, P. From self-assembled vesicles to protocells. Cold Spring Harb. Perspect. Biol. 2, 1–13 (2010).
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
Article CAS PubMed Google Scholar
Zepik, H. H., Walde, P. & Ishikawa, T. Vesicle formation from reactive surfactants. Angew. Chem. Int. Ed. 47, 1323–1325 (2008).
Huang, Y. et al. Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochim. Cosmochim. Acta 69, 1073–1084 (2005).
Yuen, G. U. & Kvenvolden, K. A. Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246, 301–303 (1973).
Mccollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).
Article CAS PubMed Google Scholar
Lai, J. C.-Y., Pearce, B. K. D., Pudritz, R. E. & Lee, D. Meteoritic abundances of fatty acids and potential reaction pathways in planetesimals. Icarus 319, 685–700 (2019).
Wang, A. & Szostak, J. W. Lipid constituents of model protocell membranes. Emerg. Top. Life. Sci. 3, 537–542 (2019).
Monnard, P.-A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268, 196–207 (2002).
Article CAS PubMed Google Scholar
Deamer, D. W. Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 792–794 (1985).
Budin, I., Bruckner, R. J. & Szostak, J. W. Formation of protocell-like vesicles in a thermal diffusion column. J. Am. Chem. Soc. 131, 9628–9629 (2009).
Article CAS PubMed PubMed Central Google Scholar
Budin, I., Debnath, A. & Szostak, J. W. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 134, 20812–20819 (2012).
Article CAS PubMed PubMed Central Google Scholar
Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014).
Article CAS PubMed PubMed Central Google Scholar
Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 1559, 1–9 (2002).
Article CAS PubMed Google Scholar
Monnard, P.-A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).
Article CAS PubMed Google Scholar
Namani, T. & Deamer, D. W. Stability of model membranes in extreme environments. Orig. Life. Evol. Biosph. 38, 329–341 (2008).
Article CAS PubMed Google Scholar
Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).
Maurer, S. E. et al. Vesicle self-assembly of monoalkyl amphiphiles under the effects of high ionic strength, extreme pH, and high temperature environments. Langmuir 34, 15560–15568 (2018).
Article CAS PubMed Google Scholar
Maurer, S. E., Deamer, D. W., Boncella, J. M. & Monnard, P.-A. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9, 979–987 (2009).
Article CAS PubMed Google Scholar
Ourisson, G. & Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).
Article CAS PubMed Google Scholar
Plobeck, N., Eifler, S., Brisson, A., Nakatani, Y. & Ourisson, G. Sodium di-polyprenyl phosphates form “primitive” membranes. Tetrahedron Lett. 33, 5249–5252 (1992).
Griffith, E. C., Rapf, R. J., Shoemaker, R. K., Carpenter, B. K. & Vaida, V. Photoinitiated synthesis of self-assembled vesicles. J. Am. Chem. Soc. 136, 3784–3787 (2014).
Article CAS PubMed Google Scholar
Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Article CAS PubMed Google Scholar
Bonfio, C. et al. Length-selective synthesis of acylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pulletikurti, S., Veena, K. S., Yadav, M., Deniz, A. A. & Krishnamurthy, R. Experimentally modeling the emergence of prebiotically plausible phospholipid vesicles. Chem 10, 1839–1867 (2024).
Brea, R. J., Cole, C. M. & Devaraj, N. K. In situ vesicle formation by native chemical ligation. Angew. Chem. Int. Ed. 53, 14102–14105 (2014).
Brea, R. J., Rudd, A. K. & Devaraj, N. K. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proc. Natl Acad. Sci. USA 113, 8589–8594 (2016).
Article CAS PubMed PubMed Central Google Scholar
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Article CAS PubMed Google Scholar
Liu, L. et al. Enzyme-free synthesis of natural phospholipids in water. Nat. Chem. 12, 1029–1034 (2020).
留言 (0)