Smart molecular designs and applications of activatable organic photosensitizers

Robertson, C. A., Evans, D. H. & Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B Biol. 96, 1–8 (2009).

Article  CAS  Google Scholar 

Wainwright, M. et al. Photoantimicrobials — are we afraid of the light? Lancet Infect. Dis. 17, e49–e55 (2017).

Article  PubMed  Google Scholar 

Matera, C. et al. Photoswitchable antimetabolite for targeted photoactivated chemotherapy. J. Am. Chem. Soc. 140, 15764–15773 (2018).

Article  CAS  PubMed  Google Scholar 

Durantini, A. M., Greene, L. E., Lincoln, R., Martínez, S. R. & Cosa, G. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autocatalytic singlet oxygen amplification to chemicontrolled photodynamic therapy. J. Am. Chem. Soc. 138, 1215–1225 (2016).

Article  CAS  PubMed  Google Scholar 

Nguyen, V. N. et al. An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. J. Am. Chem. Soc. 141, 16243–16248 (2019).

Article  CAS  PubMed  Google Scholar 

Duan, X. et al. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 138, 16686–16695 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao, D. et al. Metal–organic‐framework‐assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30, 1706831 (2018).

Article  Google Scholar 

Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 7, 39 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maruani, A. et al. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic. Chem. Commun. 51, 15304–15307 (2015).

Article  CAS  Google Scholar 

Subiros-Funosas, R. et al. Fluorogenic Trp(redBODIPY) cyclopeptide targeting keratin 1 for imaging of aggressive carcinomas. Chem. Sci. 11, 1368–1374 (2020).

Article  CAS  Google Scholar 

Fernandez, A., Thompson, E. J., Pollard, J. W., Kitamura, T. & Vendrell, M. A fluorescent activatable AND-gate chemokine CCL2 enables in vivo detection of metastasis-associated macrophages. Angew. Chem. Int. Ed. 58, 16894–16898 (2019).

Article  CAS  Google Scholar 

Wang, X., Luo, D. & Basilion, J. P. Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers 13, 2992 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, S. J. et al. Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses. Stem Cell Res. 12, 730–741 (2014).

Article  CAS  PubMed  Google Scholar 

Zhao, C. et al. Searching for the optimal fluorophore to label antimicrobial peptides. ACS Comb. Sci. 18, 689–696 (2016).

Article  CAS  PubMed  Google Scholar 

Kaplaneris, N. et al. Chemodivergent manganese-catalyzed C–H activation: modular synthesis of fluorogenic probes. Nat. Commun. 12, 3389 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barth, N. D. et al. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat. Commun. 11, 4027 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghashghaei, O. et al. Multiple multicomponent reactions: unexplored substrates, selective processes, and versatile chemotypes in biomedicine. Chem. Eur. J. 24, 14513–14521 (2018).

Article  CAS  PubMed  Google Scholar 

Wu, X., Wang, R., Kwon, N., Ma, H. & Yoon, J. Activatable fluorescent probes for in situ imaging of enzymes. Chem. Soc. Rev. 51, 450–463 (2022).

Article  CAS  PubMed  Google Scholar 

Mendive-Tapia, L. & Vendrell, M. Activatable fluorophores for imaging immune cell function. Acc. Chem. Res. 55, 1183–1193 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grimm, J. B. et al. Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy. Angew. Chem. Int. Ed. 55, 1723–1727 (2016).

Article  CAS  Google Scholar 

Mochida, A., Ogata, F., Nagaya, T., Choyke, P. L. & Kobayashi, H. Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg. Med. Chem. 26, 925–930 (2018).

Article  CAS  PubMed  Google Scholar 

Park, W. et al. Advanced smart-photosensitizers for more effective cancer treatment. Biomater. Sci. 6, 79–90 (2018).

Article  CAS  Google Scholar 

Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, A. et al. Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y. et al. Rationally designed monoamine oxidase A‐activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate 4, e256 (2023).

Article  CAS  Google Scholar 

Hulikova, A., Harris, A. L., Vaughan-Jones, R. D. & Swietach, P. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia. J. Cell. Physiol. 228, 743–752 (2013).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 50, 12656–12678 (2021).

Article  CAS  PubMed  Google Scholar 

Yamaoka, S., Okazaki, S. & Hirakawa, K. Activity control of pH-responsive photosensitizer bis(6-quinolinoxy)P(V)tetrakis(4-chlorophenyl)porphyrin through intramolecular electron transfer. Chem. Phys. Lett. 788, 139285 (2022).

Article  CAS  Google Scholar 

Wang, S. et al. Molecular engineering to construct specific cancer cell lysosome targeting photosensitizer by adjusting the proton binding ability. Sens. Actuators B Chem. 371, 132546 (2022).

Article  CAS  Google Scholar 

Siriwibool, S. et al. Near-infrared fluorescent pH responsive probe for targeted photodynamic cancer therapy. Sci. Rep. 10, 1283 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, J. et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 6, 5969–5977 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Say, B. et al. Caging of BODIPY photosensitizers through hydrazone bond formation and their activation dynamics. ChemMedChem 18, e202300199 (2023).

Article  CAS  PubMed  Google Scholar 

Gallagher, W. M. et al. A potent nonporphyrin class of photodynam

留言 (0)

沒有登入
gif