Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).
Article CAS PubMed PubMed Central Google Scholar
Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).
Meerwein, H., Büchner, E. & van Emster, K. Über die Einwirkung aromatischer Diazoverbindungen auf α,β-ungesättigte Carbonylverbindungen. J. Prakt. Chem. 152, 237–266 (1939).
Hari, D. P. & König, B. The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. 52, 4734–4743 (2013).
Ghosh, T., Santra, S., Zyryanov, G. V. & Ranu, B. C. Recent advances in visible light mediated photoinduced aryl radical generation and its application in synthesis. J. Photochem. Photobiol. 16, 100192 (2023).
Mo, F., Dong, G., Zhang, Y. & Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem. 11, 1582–1593 (2013).
Article CAS PubMed Google Scholar
Wu, X., Gao, P. & Chen, F. Synthetic applications of sulfonium salts as aryl radical precursors. Eur. J. Org. Chem. 26, e202300864 (2023).
Luo, L., Tang, S., Wu, J., Jin, S. & Zhang, H. Transition metal-free aromatic C−H, C−N, C−S and C−O borylation. Chem. Rec. 23, e202300023 (2023).
Article CAS PubMed Google Scholar
Ghosh, I., Marzo, L., Das, A., Shaikh, R. & König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 49, 1566–1577 (2016).
Article CAS PubMed Google Scholar
Kvasovs, N. & Gevorgyan, V. Contemporary methods for generation of aryl radicals. Chem. Soc. Rev. 50, 2244–2259 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hari, D. P., Schroll, P. & König, B. Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc. 134, 2958–2961 (2012). Seminal work on the photo-induced heteroarylation of aryl diazonium salt using a modern approach to photochemistry, with low-energy light irradiation and in the presence of a photocatalyst.
Article CAS PubMed Google Scholar
Zhi, L., Zhang, H., Yang, Z., Liu, W. & Wang, B. Interface coassembly of mesoporous MoS2 based-frameworks for enhanced near-infrared light driven photocatalysis. Chem. Commun. 52, 6431–6434 (2016).
Liu, J. et al. Gram-scale synthesis of aligned C3N4–polypyrrole heterojunction aerogels with tunable band structures as efficient visible and near infrared light-driven metal-free photocatalysts. J. Mater. Chem. A 5, 24920–24928 (2017).
Cai, X. et al. A g-C3N4/rGO nanocomposite as a highly efficient metal-free photocatalyst for direct C–H arylation under visible light irradiation. RSC Adv. 7, 46132–46138 (2017).
Buglioni, L., Riente, P., Palomares, E. & Pericàs, M. A. Visible-light‐promoted arylation reactions photocatalyzed by bismuth(III) oxide. Eur. J. Org. Chem. 2017, 6986–6990 (2017).
Zoller, J., Fabry, D. C. & Rueping, M. Unexpected dual role of titanium dioxide in the visible light heterogeneous catalyzed C–H arylation of heteroarenes. ACS Catal. 5, 3900–3904 (2015). First example of photoinduced C−H arylation achieved using a heterogeneous photocatalyst.
Fabry, D. C. et al. Blue light mediated C–H arylation of heteroarenes using TiO2 as an immobilized photocatalyst in a continuous-flow microreactor. Green Chem. 19, 1911–1918 (2017).
Maity, P., Kundu, D. & Ranu, B. C. Visible‐light‐photocatalyzed metal‐free C–H heteroarylation of heteroarenes at room temperature: a sustainable synthesis of biheteroaryls. Eur. J. Org. Chem. 2015, 1727–1734 (2015).
Bu, M.-J., Lu, G.-P., Jiang, J. & Cai, C. Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated in situ. Catal. Sci. Technol. 8, 3728–3732 (2018).
Hagui, W. & Soulé, J. F. Synthesis of 2-arylpyridines and 2-arylbipyridines via photoredox-induced Meerwein arylation with in situ diazotization of anilines. J. Org. Chem. 85, 3655–3663 (2020).
Article CAS PubMed Google Scholar
Natarajan, P., Kumar, N. & Sharma, M. Visible light-mediated intramolecular C–H arylation of diazonium salts of N-(2-aminoaryl)benzoimines: a facile synthesis of 6-arylphenanthridines. Org. Chem. Front. 3, 1265–1270 (2016).
Wang, L. et al. C–H arylation reactions through aniline activation catalysed by a PANI-g-C3N4-TiO2 composite under visible light in aqueous medium. Green Chem. 20, 1290–1296 (2018).
Lee, J. B. et al. Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nat. Commun. 13, 2421 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y.-X. et al. Room-temperature arylation of arenes and heteroarenes with diaryliodonium salts by photoredox catalysis. Synlett 24, 507–513 (2013).
Tobisu, M., Furukawa, T. & Chatani, N. Visible light-mediated direct arylation of arenes and heteroarenes using diaryliodonium salts in the presence and absence of a photocatalyst. Chem. Lett. 42, 1203–1205 (2013).
Li, D. et al. Visible-light-promoted C2 selective arylation of quinoline and pyridine N-oxides with diaryliodonium tetrafluoroborate. J. Org. Chem. 85, 2733–2742 (2020).
Article CAS PubMed Google Scholar
Aukland, M. H., Šiaučiulis, M., West, A., Perry, G. J. P. & Procter, D. J. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation. Nat. Catal. 3, 163–169 (2020). First formal C−H functionalization of benzene rings under metal-free photocatalysed conditions.
Karreman, S., Karnbrock, S. B. H., Kolle, S., Golz, C. & Alcarazo, M. Synthesis of 6H-benzo[c]chromene scaffolds from O-benzylated phenols through a C–H sulfenylation/radical cyclization sequence. Org. Lett. 23, 1991–1995 (2021).
Article CAS PubMed PubMed Central Google Scholar
Natarajan, P., Bala, A., Mehta, S. K. & Bhasin, K. K. Visible-light photocatalyzed synthesis of 2-aryl N-methylpyrroles, furans and thiophenes utilizing arylsulfonyl chlorides as a coupling partner. Tetrahedron 72, 2521–2526 (2016).
Cheng, Y., Gu, X. & Li, P. Visible-light photoredox in homolytic aromatic substitution: direct arylation of arenes with aryl halides. Org. Lett. 15, 2664–2667 (2013).
Article CAS PubMed Google Scholar
Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014). First example of photocatalysed generation of aryl radicals from aryl chlorides using the consecutive photoexcitation of an organic dye.
Article CAS PubMed Google Scholar
Ghosh, I. & König, B. Chromoselective photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 55, 7676–7679 (2016).
Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T. & König, B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 2018, 34–40 (2017).
Schmalzbauer, M., Ghosh, I. & König, B. Utilising excited state organic anions for photoredox catalysis: activation of (hetero)aryl chlorides by visible light-absorbing 9-anthrolate anions. Faraday Discuss. 215, 364–378 (2019).
留言 (0)