Abdullah B, Muhammad SAFAS, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, Aziz MMA (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50
Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F (2019) Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR J 2(3):165–171
Article CAS PubMed PubMed Central Google Scholar
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Qari SH (2021) An outlook on global regulatory landscape for genome-edited crops. Int J Mol Sci 22(21):11753
Article CAS PubMed PubMed Central Google Scholar
Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11(12):3366
Albuquerque FD, Maraqa MA, Chowdhury R, Mauga T, Alzard M (2020) Greenhouse gas emissions associated with road transport projects: current status, benchmarking, and assessment tools. Transp Res Proc 48:2018–2030. https://doi.org/10.1016/j.trpro.2020.08.261
Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Mahfouz MM (2020) Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biology 3(1):44
Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum Spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222
Aslam U, Tabassum B, Nasir IA, Khan A, Husnain T (2018) A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic Res 27:203–210
Article CAS PubMed Google Scholar
Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther, 353–361.https://doi.org/10.2147/BTT.S326422.eCollection2021
Ayanoğlu FB, Elçin AE, Elçin YM (2020) Bioethical issues in genome editing by CRISPR-Cas9 technology. Turkish J Biology 44(2):110–120
Bala R, Mondal MK (2022) Opportunities and challenges in industrial production of biofuels. Biofuels Bioenergy, 3–2. https://doi.org/10.1016/B978-0-323-85269-2.00003-4
Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng (1):719607. https://doi.org/10.1155/2013/719607
Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD (2016) RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels 9:1–13
Bhattacharya S, Satpati P (2022) Insights into the mechanism of CRISPR/Cas9-based genome editing from molecular dynamics simulations. ACS Omega 8(2):1817–1837
Article PubMed PubMed Central Google Scholar
Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2(3):409–416
Bower R, Elliott AR, Potier BA, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breeding 2:239–249
Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B (2021) Genetic transformation of sugarcane, current status and future prospects. Front Plant Sci 12:768609
Article PubMed PubMed Central Google Scholar
Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381
Article CAS PubMed Google Scholar
Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40(6):271–279
Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245
Article CAS PubMed PubMed Central Google Scholar
Cursi DE, Castillo RO, Tarumoto Y, Umeda M, Tippayawat A, Ponragdee W, Carneiro MS (2022) Origin, genetic diversity, conservation, and traditional and molecular breeding approaches in sugarcane. Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization, 83–116. https://doi.org/10.1007/978-3-030-74926-2_4
Department of Environment, Forest and Climate Change Government of India (DEFC) (2022) Office memorandum: exemption of the genome edited plants falling under the categories of SDN1 and SDN2 rom the provisions of the rules, 1989. http://db.zs-intern.de/uploads/1649254604-office%20memorandum%20indien%20genome%20editing.pdf. Accessed 30 June 2024
D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41(2):221–225
Dal-Bianco M, Carneiro MS, Hotta CT, Chapola RG, Hoffmann HP, Garcia AAF, Souza GM (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23(2):265–270
Article CAS PubMed Google Scholar
Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458
Article CAS PubMed Google Scholar
Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15
Article CAS PubMed Google Scholar
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F (2021) Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Editing 3:654996
Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6(1):38169
Article CAS PubMed PubMed Central Google Scholar
Enriquez GA, Trujillo LE, Menendez C, Vazquez RI, Tiel K, Dafhnis F, Hernandez L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. Developments in plant genetics and breeding, vol 5. Elsevier, pp 76–81
Entine J, Felipe MSS, Groenewald JH, Kershen DL, Lema M, McHughen A, Wray-Cahen D (2021) Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res 30(4):551–584
Article CAS PubMed PubMed Central Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811
Article CAS PubMed Google Scholar
Food and Agriculture Organization of the United Nations (FAO) (2021) Impacts of trade linearization on the world sugar market. http://www.fao.org/3/X0513E/x0513e06.htm. Accessed 22 Mar 2024
Fuchs RL, Heeren RA, Gustafson ME, Rogan GJ, Bartnicki DE, Leimgruber RM, Finn RF, Hershman A, Berberich SA (1993) Purification and characterization of microbially expressed neomycin phosphotransferase II (NPTII) protein and its equivalence to the plant expressed protein. Biotechnology 11(12):1537–1542
Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405
Article CAS PubMed PubMed Central Google Scholar
Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, D’hont A (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9(1):2638
Article PubMed PubMed Central Google Scholar
Groenewald JH, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92
Article CAS PubMed Google Scholar
Guo C, Ma X, Gao F, Guo Y (2023) Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 11:1143157
留言 (0)