Acetyl 11-Keto Beta-Boswellic Acid Improves Neurological Functions in a Mouse Model of Multiple Sclerosis

Goldenberg, M.M. 2012. Multiple sclerosis review. Pharmacy and Therapeutics 37 (3): 175.

PubMed  PubMed Central  Google Scholar 

Lassmann, H., and M. Bradl. 2017. Multiple sclerosis: Experimental models and reality. Acta neuropathologica. 133: 223–244.

Article  CAS  PubMed  Google Scholar 

Henderson, A.P., M.H. Barnett, J.D. Parratt, and J.W. Prineas. 2009. Multiple sclerosis: Distribution of inflammatory cells in newly forming lesions. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 66 (6): 739–753.

Article  Google Scholar 

Lassmann, H., W. Brück, and C.F. Lucchinetti. 2007. The immunopathology of multiple sclerosis: An overview. Brain Pathology 17 (2): 210–218.

Article  PubMed  PubMed Central  Google Scholar 

Lassmann, H. 2018. Multiple sclerosis pathology. Cold Spring Harbor Perspectives in Medicine 8 (3): a028936.

Article  PubMed  PubMed Central  Google Scholar 

Jadidi-Niaragh, F., and A. Mirshafiey. 2011. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scandinavian Journal of Immunology 74 (1): 1–13.

Article  CAS  PubMed  Google Scholar 

Arellano, G., E. Acuña, L.I. Reyes, P.A. Ottum, P. De Sarno, L. Villarroel, et al. 2017. Th1 and Th17 cells and associated cytokines discriminate among clinically isolated syndrome and multiple sclerosis phenotypes. Frontiers in Immunology 8: 753.

Article  PubMed  PubMed Central  Google Scholar 

Merkler, D., T. Ernsting, M. Kerschensteiner, W. Brück, and C. Stadelmann. 2006. A new focal EAE model of cortical demyelination: Multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 129 (8): 1972–1983.

Article  PubMed  Google Scholar 

Tavazzi, E., M. Rovaris, and L. La Mantia. 2014. Drug therapy for multiple sclerosis. CMAJ 186 (11): 833–840.

Article  PubMed  PubMed Central  Google Scholar 

Ganji, A., M.E. Monfared, S. Shapoori, P. Nourbakhsh, A. Ghazavi, K. Ghasami, et al. 2020. Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine 126: 154911.

Article  CAS  PubMed  Google Scholar 

Zahid, M., A. Busmail, S.S. Penumetcha, S. Ahluwalia, R. Irfan, S.A. Khan, et al. 2021. Tumor necrosis factor alpha blockade and multiple sclerosis: exploring new avenues. Cureus 13 (10): e18847.

PubMed  PubMed Central  Google Scholar 

Peerlings, D., M. Mimpen, and J. Damoiseaux. 2021. The IL-2–IL-2 receptor pathway: Key to understanding multiple sclerosis. Journal of Translational Autoimmunity 4: 100123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grunwald, C., A. Krętowska-Grunwald, E. Adamska-Patruno, J. Kochanowicz, A. Kułakowska, and M. Chorąży. 2024. The role of selected interleukins in the development and progression of multiple sclerosis—A systematic review. International Journal of Molecular Sciences. 25 (5): 2589.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stampanoni Bassi, M., E. Iezzi, J. Drulovic, T. Pekmezovic, L. Gilio, R. Furlan, et al. 2020. IL-6 in the cerebrospinal fluid signals disease activity in multiple sclerosis. Frontiers in Cellular Neuroscience. 14: 120.

Article  PubMed  PubMed Central  Google Scholar 

Wagner, C.A., P.J. Roqué, and J.M. Goverman. 2020. Pathogenic T cell cytokines in multiple sclerosis. Journal of Experimental Medicine 217 (1): e20190460.

Article  PubMed  Google Scholar 

Huseby, E.S., P.G. Huseby, S. Shah, R. Smith, and B.D. Stadinski. 2012. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Frontiers in Immunology 3: 64.

Article  PubMed  PubMed Central  Google Scholar 

Wagner, C.A., P.J. Roqué, T.R. Mileur, D. Liggitt, and J.M. Goverman. 2020. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. The Journal of Clinical Investigation. 130 (1): 203–213.

Article  CAS  PubMed  Google Scholar 

Lückel, C., F. Picard, H. Raifer, L. Campos Carrascosa, A. Guralnik, Y. Zhang, et al. 2019. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications 10 (1): 5722.

Article  PubMed  PubMed Central  Google Scholar 

Polman, C.H., S.C. Reingold, B. Banwell, M. Clanet, J.A. Cohen, M. Filippi, et al. 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology. 69 (2): 292–302.

Article  PubMed  PubMed Central  Google Scholar 

Chew, L.-J., and C.A. DeBoy. 2016. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 110: 605–625.

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Z. Ning, C. Lu, S. Zhao, J. Wang, B. Liu, et al. 2013. Triterpenoid resinous metabolites from the genus Boswellia: Pharmacological activities and potential species-identifying properties. Chemistry Central Journal. 7: 1–16.

Article  Google Scholar 

Taherzadeh, D., V. Baradaran Rahimi, H. Amiri, S. Ehtiati, R. Yahyazadeh, S.I. Hashemy, et al. 2022. Acetyl-11-Keto-β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. Evidence-Based Complementary and Alternative Medicine 2022 (1): 2620710.

PubMed  PubMed Central  Google Scholar 

Ragab, E.A., M.F. Abd El-Wahab, A.S. Doghish, R.M. Salama, N. Eissa, and S.F. Darwish. 2024. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn-Schmiedeberg’s Archives of Pharmacology. 397 (3): 1477–1504.

Article  CAS  PubMed  Google Scholar 

Roy, N.K., D. Parama, K. Banik, D. Bordoloi, A.K. Devi, K.K. Thakur, et al. 2019. An update on pharmacological potential of boswellic acids against chronic diseases. International Journal of Molecular Sciences. 20 (17): 4101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadeem, A., S.F. Ahmad, N.O. Al-Harbi, W. Sarawi, S.M. Attia, W.A. Alanazi, et al. 2022. Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. International Immunopharmacology. 107: 108703.

Article  CAS  PubMed  Google Scholar 

Wang, Y., Z. Xiong, C. Zhou, Q. Zhang, S. Liu, S. Dong, et al. 2022. AKBA promotes axonal regeneration via RhoA/Rictor to repair damaged sciatic nerve. International Journal of Molecular Sciences. 23 (24): 15903.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad, S., S.A. Khan, A. Kindelin, T. Mohseni, K. Bhatia, M.N. Hoda, et al. 2019. Acetyl-11-keto-β-boswellic acid (AKBA) attenuates oxidative stress, inflammation, complement activation and cell death in brain endothelial cells following OGD/reperfusion. Neuromolecular Medicine 21 (4): 505–516.

Article  CAS  PubMed  Google Scholar 

Jahan-Abad, A.J., S. Karima, S.S. Negah, F. Noorbakhsh, M. Borhani-Haghighi, and A. Gorji. 2019. Therapeutic potential of conditioned medium derived from oligodendrocytes cultured in a self-assembling peptide nanoscaffold in experimental autoimmune encephalomyelitis. Brain Research. 1711: 226–235.

Article  CAS  Google Scholar 

Jahan-Abad, A.J., S. Karima, S. Shateri, S.M. Baram, S. Rajaei, P. Morteza-Zadeh, et al. 2020. Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 40 (1): 84–92.

Article  CAS  PubMed  Google Scholar 

Li, W., L. Ren, X. Zheng, J. Liu, J. Wang, T. Ji, et al. 2020. 3-O-Acetyl-11-keto-β-boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma. Acta Pharmaceutica Sinica B. 10 (2): 301–312.

Article  PubMed  PubMed Central  Google Scholar 

Ciotti, J.R., and A.H. Cross. 2018. Disease-modifying treatment in progressive multiple sclerosis. Current Treatment Options in Neurology 20: 1–26.

Article  Google Scholar 

留言 (0)

沒有登入
gif