Rheumatology in the digital health era: status quo and quo vadis?

Burrell, A. et al. How useful are digital health terms for outcomes research? An ISPOR special interest group report. Value Health 25, 1469–1479 (2022).

Article  PubMed  Google Scholar 

Flores, M., Glusman, G., Brogaard, K., Price, N. D. & Hood, L. P4 medicine: how systems medicine will transform the healthcare sector and society. Pers. Med. 10, 565–576 (2013).

Article  CAS  Google Scholar 

Sikka, R., Morath, J. M. & Leape, L. The quadruple aim: care, health, cost and meaning in work. BMJ Qual. Saf. 24, 608–610 (2015).

Article  PubMed  Google Scholar 

Biln, N. K., Bansback, N., Shojania, K., Puil, L. & Harrison, M. A scoping review of triage approaches for the referral of patients with suspected inflammatory arthritis, from primary to rheumatology care. Rheumatol. Int. 44, 2279–2292 (2024).

Article  PubMed  Google Scholar 

Knitza, J. et al. Diagnostic accuracy of a mobile AI-based symptom checker and a web-based self-referral tool in rheumatology: multicenter randomized controlled trial. J. Med. Internet Res. 26, e55542 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, S. S. et al. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Rheumatology 59, 1059–1065 (2020).

Article  PubMed  Google Scholar 

Kennedy, J. et al. Predicting a diagnosis of ankylosing spondylitis using primary care health records — a machine learning approach. PLoS One 18, e0279076 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kernder, A. et al. Digital rheumatology in the era of COVID-19: results of a national patient and physician survey. RMD Open 7, e001548 (2021).

Article  PubMed  Google Scholar 

Knitza, J. et al. Patient’s perception of digital symptom assessment technologies in rheumatology: results from a multicentre study. Front. Public Health 10, 844669 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Powley, L., McIlroy, G., Simons, G. & Raza, K. Are online symptoms checkers useful for patients with inflammatory arthritis? BMC Musculoskelet. Disord. 17, 362 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ehrenstein, B., Pongratz, G., Fleck, M. & Hartung, W. The ability of rheumatologists blinded to prior workup to diagnose rheumatoid arthritis only by clinical assessment: a cross-sectional study. Rheumatology 57, 1592–1601 (2018).

Article  PubMed  Google Scholar 

Venerito, V. & Iannone, F. Large language model-driven sentiment analysis for facilitating fibromyalgia diagnosis. RMD Open 10, e004367 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Gräf, M. et al. Comparison of physician and artificial intelligence-based symptom checker diagnostic accuracy. Rheumatol. Int. 42, 2167–2176 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Krusche, M., Callhoff, J., Knitza, J. & Ruffer, N. Diagnostic accuracy of a large language model in rheumatology: comparison of physician and ChatGPT-4. Rheumatol. Int. 2, 303–306 (2023).

Article  Google Scholar 

Malcolm, E. J. et al. eConsults’ impact on care access and wait times in rheumatology. J. Clin. Rheumatol. 28, 147–154 (2022).

Article  PubMed  Google Scholar 

Harrington, J. T. & Walsh, M. B. Pre-appointment management of new patient referrals in rheumatology: a key strategy for improving health care delivery. Arthritis Rheum. 45, 295–300 (2001).

Article  CAS  PubMed  Google Scholar 

Moens, H. J. & van der Korst, J. K. Computer-assisted diagnosis of rheumatic disorders. Semin. Arthritis Rheum. 21, 156–169 (1991).

Article  CAS  PubMed  Google Scholar 

Alder, H. et al. Computer-based diagnostic expert systems in rheumatology: where do we stand in 2014? Int. J. Rheumatol. 2014, 672714 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kostopoulou, O., Porat, T., Corrigan, D., Mahmoud, S. & Delaney, B. C. Diagnostic accuracy of GPs when using an early-intervention decision support system: a high-fidelity simulation. Br. J. Gen. Pract. 67, e201–e208 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Porat, T., Delaney, B. & Kostopoulou, O. The impact of a diagnostic decision support system on the consultation: perceptions of GPs and patients. BMC Med. Inf. Decis. Mak. 17, 79 (2017).

Article  Google Scholar 

Ronicke, S. et al. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet J. Rare Dis. 14, 69 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ramnarayan, P. et al. ISABEL: a web-based differential diagnostic aid for paediatrics: results from an initial performance evaluation. Arch. Dis. Child. 88, 408–413 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dragusin, R. et al. FindZebra: a search engine for rare diseases. Int. J. Med. Inf. 82, 528–538 (2013).

Article  Google Scholar 

Knitza, J. et al. Accuracy and usability of a diagnostic decision support system in the diagnosis of three representative rheumatic diseases: a randomized controlled trial among medical students. Arthritis Res. Ther. 23, 233 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Venerito, V., Puttaswamy, D., Iannone, F. & Gupta, L. Large language models and rheumatology: a comparative evaluation. Lancet Rheumatol. 5, e574–e578 (2023).

Article  CAS  PubMed  Google Scholar 

Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

Article  CAS  PubMed  Google Scholar 

Chen, X. et al. RareBench: can LLMs serve as rare diseases specialists? Preprint at arXiv https://doi.org/10.48550/arXiv.2402.06341 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Muehlensiepen, F. et al. At-home blood self-sampling in rheumatology: a qualitative study with patients and health care professionals. BMC Health Serv. Res. 22, 1470 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Knitza, J. et al. Accuracy and tolerability of self-sampling of capillary blood for analysis of inflammation and autoantibodies in rheumatoid arthritis patients-results from a randomized controlled trial. Arthritis Res. Ther. 24, 125 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Versluis, A., Schnoor, K., Chavannes, N. H. & Talboom-Kamp, E. P. Direct access for patients to diagnostic testing and results using ehealth: systematic review on ehealth and diagnostics. J. Med. Internet Res. 24, e29303 (2022).

Article  PubMed  PubMed Central  Google Scholar 

von Rohr, S. et al. Student-led clinics and ePROs to accelerate diagnosis and treatment of patients with axial spondyloarthritis: results from a prospective pilot study. Rheumatol. Int. 43, 1905–1911 (2023).

Article  Google Scholar 

Frederiksen, B. A. et al. Ultrasound joint examination by an automated system versus by a rheumatologist: from a patient perspective. Adv. Rheumatol. 62, 30 (2022).

Article  PubMed  Google Scholar 

Caratsch, L. et al. Detection and grading of radiographic hand osteoarthritis using an automated machine learning platform. ACR Open Rheumatol. 6, 388–395 (2024).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif