Atorvastatin Alleviates Age-Related Macular Degeneration via AIM2-Regulated Pyroptosis

Steinmetz, Jaimie D., et al. 2021. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 9 (2): e144–e160.

Article  Google Scholar 

Mitchell, P., et al. 2018. Age-related macular degeneration. The Lancet 392 (10153): 1147–1159.

Article  Google Scholar 

2023. [Evidence-based guidelines for diagnosis and treatment of age-related macular degeneration in China (2023)]. Zhonghua Yan Ke Za Zhi 59(5): p. 347–366. https://doi.org/10.3760/cma.j.cn112142-20221222-00649.

Shughoury, A., D.D. Sevgi, and T.A. Ciulla. 2022. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 13 (7): 1233.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunaief, J.L., et al. 2002. The role of apoptosis in age-related macular degeneration. Archives of Ophthalmology 120 (11): 1435–1442.

Article  PubMed  Google Scholar 

Hageman, G.S., et al. 2001. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Progress in Retinal and Eye Research 20 (6): 705–732.

Article  CAS  PubMed  Google Scholar 

Kaneko, H., et al. 2011. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471 (7338): 325–330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarks, J.P., S.H. Sarks, and M.C. Killingsworth. 1988. Evolution of geographic atrophy of the retinal pigment epithelium. Eye (London, England) 2 (Pt 5): 552–577.

Article  PubMed  Google Scholar 

Fernandes, A.R., et al. 2022. Exudative versus Nonexudative Age-Related Macular Degeneration: Physiopathology and Treatment Options. International Journal of Molecular Sciences 23 (5): 2592.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cookson, B.T., and M.A. Brennan. 2001. Pro-inflammatory programmed cell death. Trends in Microbiology 9 (3): 113–114.

Article  CAS  PubMed  Google Scholar 

Singh, M., and S.C. Tyagi. 2017. Hyperhomocysteinemia and Age-related Macular Degeneration: Role of Inflammatory Mediators and Pyroptosis; A Proposal. Medical Hypotheses 105: 17–21.

Article  CAS  PubMed  Google Scholar 

Yang, M., et al. 2020. The Effect of Lycium barbarum Polysaccharides on Pyroptosis-Associated Amyloid beta1–40 Oligomers-Induced Adult Retinal Pigment Epithelium 19 Cell Damage. International Journal of Molecular Sciences 21 (13): 4658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strzalka-Mrozik, B., et al. 2023. Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment. Current Issues in Molecular Biology 45 (2): 1500–1518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, D., et al. 2023. eIF2α incites photoreceptor cell and retina damage by all-trans-retinal. Journal of Biological Chemistry 299 (5): 104686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, J., et al. 2018. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye. Journal of Neuroinflammation 15 (1): 15.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y., et al. 2021. Pyroptosis: A New Insight Into Eye Disease Therapy. Frontiers in Pharmacology 12: 797110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, K., et al. 2011. Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cellular Microbiology 13 (10): 1586–1600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sauer, J.D., et al. 2010. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host & Microbe 7 (5): 412–419.

Article  CAS  Google Scholar 

Sagulenko, V., et al. 2013. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation 20 (9): 1149–1160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, L.M., et al. 2020. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis 293: 26–34.

Article  CAS  PubMed  Google Scholar 

Zuo, Y., et al. 2021. Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes, Metabolic Syndrome and Obesity 14: 1631–1645.

Article  PubMed  PubMed Central  Google Scholar 

Chen, A., et al. 2021. Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation. Cell Death & Disease 12 (1): 78.

Article  Google Scholar 

Yang, S., et al. 2022. Simvastatin Inhibits Tumor Growth and Migration by Mediating Caspase-1-Dependent Pyroptosis in Glioblastoma Multiforme. World Neurosurgery 165: e12–e21.

Article  PubMed  Google Scholar 

Wang, Y., et al. 2023. PFKFB3 knockdown attenuates Amyloid β-Induced microglial activation and retinal pigment epithelium disorders in mice. International Immunopharmacology 115: 109691.

Article  CAS  PubMed  Google Scholar 

Wang, K., et al. 2017. Amyloid β induces NLRP3 inflammasome activation in retinal pigment epithelial cells via NADPH oxidase- and mitochondria-dependent ROS production. Journal of Biochemical and Molecular Toxicology 31(6). https://doi.org/10.1002/jbt.21887

Wang, K., et al. 2017. Puerarin inhibits amyloid β-induced NLRP3 inflammasome activation in retinal pigment epithelial cells via suppressing ROS-dependent oxidative and endoplasmic reticulum stresses. Experimental Cell Research 357 (2): 335–340.

Article  CAS  PubMed  Google Scholar 

Qian, J., et al. 2011. Impact of HMG-CoA reductase inhibition on oxidant-induced injury in human retinal pigment epithelium cells. Journal of Cellular Biochemistry 112 (9): 2480–2489.

Article  CAS  PubMed  Google Scholar 

Vavvas, D.G., et al. 2016. Regression of Some High-risk Features of Age-related Macular Degeneration (AMD) in Patients Receiving Intensive Statin Treatment. eBioMedicine 5: 198–203.

Article  PubMed  PubMed Central  Google Scholar 

Yamada, K., et al. 2007. Inhibition of laser-induced choroidal neovascularization by atorvastatin by downregulation of monocyte chemotactic protein-1 synthesis in mice. Investigative Ophthalmology & Visual Science 48 (4): 1839–1843.

Article  Google Scholar 

Jian-Qiang, X.U., Guo-Jun, Z., Yan, W., Si-Yang, Y.U., & Gao-Feng, Z. 2016. Advance in the anti-inflammatory effect and mechanism of atorvastatin. Chinese Journal of Arteriosclerosis 24 (4): 419–423. https://link.cnki.net/urlid/43.1262.r.20160505.1340.038

Isas, J.M., et al. 2010. Soluble and mature amyloid fibrils in drusen deposits. Investigative Ophthalmology & Visual Science 51 (3): 1304–1310.

Article  Google Scholar 

Wang, L., and X. Mao. 2021. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. International Journal of Molecular Sciences 22 (5): 2360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, M., et al. 2021. Role of amyloid β-peptide in the pathogenesis of age-related macular degeneration. BMJ Open Ophthalmology 6 (1): e000774.

Article  PubMed  PubMed Central  Google Scholar 

Xue, Y., et al. 2019. Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends in Immunology 40 (11): 1035–1052.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif