Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323–344 (2011).
Article CAS PubMed PubMed Central Google Scholar
Paz, H., Pathak, N. & Yang, J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 33, 4193–4202 (2014).
Article CAS PubMed Google Scholar
Kelley, L. C. et al. Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs. Dev. Cell 48, 313–328 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kim, J. H. & Chen, E. H. The fusogenic synapse at a glance. J. Cell Sci. 132, jcs213124 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).
Article CAS PubMed PubMed Central Google Scholar
Leong, H. S. et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8, 1558–1570 (2014).
Article CAS PubMed Google Scholar
Chang, J. & Chaudhuri, O. Beyond proteases: basement membrane mechanics and cancer invasion. J. Cell Biol. 218, 2456–2469 (2019).
Article PubMed PubMed Central Google Scholar
Chen, E. H. & Olson, E. N. Unveiling the mechanisms of cell–cell fusion. Science 308, 369–373 (2005).
Article CAS PubMed Google Scholar
Chen, E. H., Grote, E., Mohler, W. & Vignery, A. Cell–cell fusion. FEBS Lett. 581, 2181–2193 (2007).
Article CAS PubMed Google Scholar
Willkomm, L. & Bloch, W. State of the art in cell–cell fusion. Methods Mol. Biol. 1313, 1–19 (2015).
Kim, J. H., Jin, P., Duan, R. & Chen, E. H. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 32, 162–170 (2015).
Article CAS PubMed PubMed Central Google Scholar
Sampath, S. C., Sampath, S. C. & Millay, D. P. Myoblast fusion confusion: the resolution begins. Skelet. Muscle 8, 3 (2018).
Article PubMed PubMed Central Google Scholar
Lee, D. M. & Chen, E. H. Drosophila myoblast fusion: invasion and resistance for the ultimate union. Annu. Rev. Genet. 53, 67–91 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sens, K. L. et al. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191, 1013–1027 (2010).
Article CAS PubMed PubMed Central Google Scholar
Jin, P. et al. Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev. Cell 20, 623–638 (2011).
Article CAS PubMed PubMed Central Google Scholar
Duan, R. et al. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. J. Cell Biol. 199, 169–185 (2012).
Article CAS PubMed PubMed Central Google Scholar
Zhang, R. et al. Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nat. Cell Biol. 22, 674–688 (2020).
Article CAS PubMed PubMed Central Google Scholar
Shilagardi, K. et al. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell–cell fusion. Science 340, 359–363 (2013).
Article CAS PubMed PubMed Central Google Scholar
Kim, S. et al. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12, 571–586 (2007).
Article CAS PubMed Google Scholar
Luo, Z. et al. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev. Cell 57, 1582–1597 (2022).
Article CAS PubMed PubMed Central Google Scholar
Buckingham, M. et al. The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59–68 (2003).
Article PubMed PubMed Central Google Scholar
Buckingham, M. Skeletal muscle progenitor cells and the role of Pax genes. C. R. Biol. 330, 530–533 (2007).
Article CAS PubMed Google Scholar
Murphy, M. & Kardon, G. Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr. Top. Dev. Biol. 96, 1–32 (2011).
Article CAS PubMed PubMed Central Google Scholar
Hernandez-Hernandez, J. M., Garcia-Gonzalez, E. G., Brun, C. E. & Rudnicki, M. A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin. Cell Dev. Biol. 72, 10–18 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kanisicak, O., Mendez, J. J., Yamamoto, S., Yamamoto, M. & Goldhamer, D. J. Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol. 332, 131–141 (2009).
Article CAS PubMed PubMed Central Google Scholar
Le Grand, F. & Rudnicki, M. A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19, 628–633 (2007).
Article PubMed PubMed Central Google Scholar
Gruenbaum-Cohen, Y. et al. The actin regulator N-WASp is required for muscle-cell fusion in mice. Proc. Natl Acad. Sci. USA 109, 11211–11216 (2012).
Article CAS PubMed PubMed Central Google Scholar
Vasyutina, E., Martarelli, B., Brakebusch, C., Wende, H. & Birchmeier, C. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc. Natl Acad. Sci. USA 106, 8935–8940 (2009).
Article CAS PubMed PubMed Central Google Scholar
Laurin, M. et al. The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc. Natl Acad. Sci. USA 105, 15446–15451 (2008).
Article CAS PubMed PubMed Central Google Scholar
Tran, V. et al. Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nat. Commun. 13, 7077 (2022).
留言 (0)