Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion

Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323–344 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paz, H., Pathak, N. & Yang, J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 33, 4193–4202 (2014).

Article  CAS  PubMed  Google Scholar 

Kelley, L. C. et al. Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs. Dev. Cell 48, 313–328 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J. H. & Chen, E. H. The fusogenic synapse at a glance. J. Cell Sci. 132, jcs213124 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leong, H. S. et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8, 1558–1570 (2014).

Article  CAS  PubMed  Google Scholar 

Chang, J. & Chaudhuri, O. Beyond proteases: basement membrane mechanics and cancer invasion. J. Cell Biol. 218, 2456–2469 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chen, E. H. & Olson, E. N. Unveiling the mechanisms of cell–cell fusion. Science 308, 369–373 (2005).

Article  CAS  PubMed  Google Scholar 

Chen, E. H., Grote, E., Mohler, W. & Vignery, A. Cell–cell fusion. FEBS Lett. 581, 2181–2193 (2007).

Article  CAS  PubMed  Google Scholar 

Willkomm, L. & Bloch, W. State of the art in cell–cell fusion. Methods Mol. Biol. 1313, 1–19 (2015).

Article  PubMed  Google Scholar 

Kim, J. H., Jin, P., Duan, R. & Chen, E. H. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 32, 162–170 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sampath, S. C., Sampath, S. C. & Millay, D. P. Myoblast fusion confusion: the resolution begins. Skelet. Muscle 8, 3 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lee, D. M. & Chen, E. H. Drosophila myoblast fusion: invasion and resistance for the ultimate union. Annu. Rev. Genet. 53, 67–91 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sens, K. L. et al. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191, 1013–1027 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin, P. et al. Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev. Cell 20, 623–638 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan, R. et al. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. J. Cell Biol. 199, 169–185 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, R. et al. Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nat. Cell Biol. 22, 674–688 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shilagardi, K. et al. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell–cell fusion. Science 340, 359–363 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S. et al. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12, 571–586 (2007).

Article  CAS  PubMed  Google Scholar 

Luo, Z. et al. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev. Cell 57, 1582–1597 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buckingham, M. et al. The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59–68 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Buckingham, M. Skeletal muscle progenitor cells and the role of Pax genes. C. R. Biol. 330, 530–533 (2007).

Article  CAS  PubMed  Google Scholar 

Murphy, M. & Kardon, G. Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr. Top. Dev. Biol. 96, 1–32 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Hernandez, J. M., Garcia-Gonzalez, E. G., Brun, C. E. & Rudnicki, M. A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin. Cell Dev. Biol. 72, 10–18 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanisicak, O., Mendez, J. J., Yamamoto, S., Yamamoto, M. & Goldhamer, D. J. Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol. 332, 131–141 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Grand, F. & Rudnicki, M. A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19, 628–633 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Gruenbaum-Cohen, Y. et al. The actin regulator N-WASp is required for muscle-cell fusion in mice. Proc. Natl Acad. Sci. USA 109, 11211–11216 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasyutina, E., Martarelli, B., Brakebusch, C., Wende, H. & Birchmeier, C. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc. Natl Acad. Sci. USA 106, 8935–8940 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laurin, M. et al. The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc. Natl Acad. Sci. USA 105, 15446–15451 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tran, V. et al. Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nat. Commun. 13, 7077 (2022).

留言 (0)

沒有登入
gif