Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, et al. Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics. Am J Hum Genet. 2022;109:2185–95.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet. 2020;52:572–81.
Article CAS PubMed PubMed Central Google Scholar
Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M, et al. Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nat Commun. 2020;11:1217.
Article CAS PubMed PubMed Central Google Scholar
Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551:92–4.
Article CAS PubMed PubMed Central Google Scholar
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet [Internet]. 2020;52:56–73. https://www.nature.com/articles/s41588-019-0537-1.
Article CAS PubMed PubMed Central Google Scholar
Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61.
Article CAS PubMed PubMed Central Google Scholar
Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009;41:585–90.
Article CAS PubMed PubMed Central Google Scholar
Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020;52:669–79.
Article CAS PubMed PubMed Central Google Scholar
Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet. 2015;47:373–80.
Article CAS PubMed PubMed Central Google Scholar
Rashkin SR, Graff RE, Kachuri L, Thai KK, Alexeeff SE, Blatchins MA, et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat Commun. 2020;11:1–14.
Gao G, Fiorica PN, McClellan J, Barbeira AN, Li JL, Olopade OI, et al. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Am J Hum Genet. 2023;110:950–62.
Article CAS PubMed PubMed Central Google Scholar
Guo X, Lin W, Bao J, Cai Q, Pan X, Bai M, et al. A comprehensive cis-eQTL analysis revealed target genes in breast cancer susceptibility loci identified in genome-wide association studies. Am J Hum Genet. 2018;102:890–903.
Article CAS PubMed PubMed Central Google Scholar
Hoffman JD, Graff RE, Emami NC, Tai CG, Passarelli MN, Hu D, et al. Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with breast cancer risk. PLoS Genet. 2017;13:1–19.
Wu L, Shi W, Long J, Guo X, Michailidou K, Beesley J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet. 2018;50:968–78.
Article CAS PubMed PubMed Central Google Scholar
He J, Wen W, Beeghly A, Chen Z, Cao C, Shu XO, et al. Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers. Nat Commun. 2022;13:1–15.
Li JL, McClellan JC, Zhang H, Gao G, Huo D. Multi-tissue transcriptome-wide association studies identified 235 genes for intrinsic subtypes of breast cancer. JNCI: J Natl Cancer Inst. 2024;116:1105–15.
Zhu M, Ma Z, Zhang X, Hang D, Yin R, Feng J, et al. C-reactive protein and cancer risk: a pan-cancer study of prospective cohort and Mendelian randomization analysis. BMC Med. 2022;20:1–13.
Robins C, Liu Y, Fan W, Duong DM, Meigs J, Harerimana NV, et al. Genetic control of the human brain proteome. Am J Hum Genet. 2021;108:400–10.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Dutta D, Köttgen A, Tin A, Schlosser P, Grams ME, et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat Genet. 2022;54:593–602.
Article CAS PubMed PubMed Central Google Scholar
Zhang YH, Cho MH, Morrow JD, Castaldi PJ, Hersh CP, Midha MK, et al. Integrating genetics, transcriptomics, and proteomics in lung tissue to investigate chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2023;68:651–63.
Article CAS PubMed PubMed Central Google Scholar
He B, Shi J, Wang X, Jiang H, Zhu HJ. Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biol. 2020;18:1–16.
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
Article CAS PubMed PubMed Central Google Scholar
Jia G, Yang Y, Ping J, Xu S, Liu L, Guo X, et al. Identification of target proteins for breast cancer genetic risk loci and blood risk biomarkers in a large study by integrating genomic and proteomic data. Int J Cancer. 2023;152:2314–20.
Article CAS PubMed PubMed Central Google Scholar
Gregga I, Pharoah PDP, Gayther SA, Manichaikul A, Im HK, Kar SP, et al. Predicted proteome association studies of breast, prostate, ovarian, and endometrial cancers implicate plasma protein regulation in cancer susceptibility. Cancer Epidemiol, Biomark Prev. 2023;32:1198–207.
Wang Y, Yi K, Chen B, Zhang B, Jidong G. Elucidating the susceptibility to breast cancer: an in-depth proteomic and transcriptomic investigation into novel potential plasma protein biomarkers. Front Mol Biosci. 2023;10:1–13.
Sherman ME, Figueroa JD, Henry JE, Clare SE, Rufenbarger C, Storniolo AM. The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center: A unique resource for defining the ‘molecular histology’ of the breast. Cancer Prev Res 2012;5:528–35.
Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018;9:1–20.
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article CAS PubMed PubMed Central Google Scholar
Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020;48:D941–7.
Article CAS PubMed Google Scholar
Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:1–16.
Dou Y, Liu Y, Yi X, Olsen LK, Zhu H, Gao Q, et al. SEPepQuant enhances the detection of possible isoform regulations in shotgun proteomics. Nat Commun. 2023;14:1–15.
Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012;7:500–7.
Article CAS PubMed PubMed Central Google Scholar
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.
Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1–13.
Article PubMed PubMed Central Google Scholar
Tay JK, Narasimhan B, Hastie T. Elastic net regularization paths for all generalized linear models. J Stat Softw. 2023;106:1–31.
Zou H, Hastie T Regularization and variable selection via the elastic net [Internet]. Vol. 67, J. R. Statist. Soc. B. 2005. Available from: https://academic.oup.com/jrsssb/article/67/2/301/7109482.
Liu D, Zhu J, Zhou D, Nikas EG, Mitanis NT, Sun Y, et al. A transcriptome-wide association study identifies novel candidate susceptibility genes for prostate cancer risk. Int J Cancer. 2022;150:80–90.
留言 (0)