Albhaisi S, Noureddin M. Current and potential therapies targeting inflammation in NASH. Front Endocrinol. 2021;12: 767314. https://doi.org/10.3389/fendo.2021.767314.
Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal. 2020;76: 109807. https://doi.org/10.1016/j.cellsig.2020.109807.
Article PubMed CAS Google Scholar
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: role of cardiac redox signaling. Free Radical Biol Med. 2021;166:33–52. https://doi.org/10.1016/j.freeradbiomed.2021.02.012.
Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P, Geurtsen W, Tsiftsoglou A. Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev. 2015;24(21):2496–512. https://doi.org/10.1089/scd.2015.0197.
Article PubMed PubMed Central CAS Google Scholar
Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD—more than inflammation. Nat Rev Endocrinol. 2022;18(8):461–72. https://doi.org/10.1038/s41574-022-00675-6.
Article PubMed CAS Google Scholar
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radical Biol Med. 2022;188:221–61. https://doi.org/10.1016/j.freeradbiomed.2022.06.226.
Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen signals through peroxisome proliferator-activated receptor-γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology. 2017;152(1):243–56. https://doi.org/10.1053/j.gastro.2016.09.017.
Article PubMed CAS Google Scholar
Boeckmans J, Natale A, Rombaut M, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Anti-NASH drug development hitches a lift on PPAR agonism. Cells. 2019;9(1):37. https://doi.org/10.3390/cells9010037.
Article PubMed PubMed Central CAS Google Scholar
Bruno S, Pasquino C, Herrera Sanchez MB, Tapparo M, Figliolini F, Grange C, Chiabotto G, Cedrino M, Deregibus MC, Tetta C, Camussi G. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol Ther. 2020;28(2):479–89. https://doi.org/10.1016/j.ymthe.2019.10.016.
Article PubMed CAS Google Scholar
Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling diet-induced NAFLD and NASH in rats: a comprehensive review. Biomedicines. 2021;9(4):378. https://doi.org/10.3390/biomedicines9040378.
Article PubMed PubMed Central CAS Google Scholar
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. https://doi.org/10.1002/hep.29367.
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol Med. 2020;152:116–41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025.
Chougule A, Baroi S, Czernik PJ, Crowe E, Chang MR, Griffin PR, Lecka-Czernik B. Osteocytes contribute via nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism. Front Endocrinol. 2023;14:1145467. https://doi.org/10.3389/fendo.2023.1145467.
Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021;266: 118868. https://doi.org/10.1016/j.lfs.2020.118868.
Article PubMed CAS Google Scholar
El-Derany MO, AbdelHamid SG. Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: emphasis on caspase-2 signaling inhibition. Biochem Pharmacol. 2021;190: 114624. https://doi.org/10.1016/j.bcp.2021.114624.
Article PubMed CAS Google Scholar
Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(8):484–95. https://doi.org/10.1038/s41574-021-00507-z.
Article PubMed PubMed Central Google Scholar
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. https://doi.org/10.1038/s41591-018-0104-9.
Article PubMed PubMed Central CAS Google Scholar
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800. https://doi.org/10.1016/j.molcel.2017.05.032.
Article PubMed PubMed Central CAS Google Scholar
Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut. 2019;68(11):2065–79. https://doi.org/10.1136/gutjnl-2018-318146.
Article PubMed CAS Google Scholar
Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier MP, Yeoh G, Sievert W, Lim R. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther. 2021;12(1):429. https://doi.org/10.1186/s13287-021-02476-6.
Article PubMed PubMed Central CAS Google Scholar
Guillot A, Tacke F. Liver macrophages: old dogmas and new insights. Hepatology Communications. 2019;3(6):730–43. https://doi.org/10.1002/hep4.1356.
Article PubMed PubMed Central Google Scholar
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95.
Article PubMed CAS Google Scholar
Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:2582080. https://doi.org/10.1155/2017/2582080.
Article PubMed PubMed Central CAS Google Scholar
Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Ranvir R, Kadam S, Patel H, Swain P, Roy SS, Das N, Karmakar E, Wahli W, Patel PR. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38(6):1084–94. https://doi.org/10.1111/liv.13634.
Article PubMed CAS Google Scholar
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, He Q, Hu S, Zhang T, Chen T, Song J. Dynamically bioresponsive DNA hydrogel incorporated with dual-functional stem cells from apical papilla-derived exosomes promotes diabetic bone regeneration. ACS Appl Mater Interfaces. 2022;14(14):16082–99. https://doi.org/10.1021/acsami.2c02278.
Article PubMed CAS Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.
Article PubMed PubMed Central CAS Google Scholar
Kang Y, Song Y, Luo Y, Song J, Li C, Yang S, Guo J, Yu J, Zhang X. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radical Biol Med. 2022;192:25–36. https://doi.org/10.1016/j.freeradbiomed.2022.08.037.
留言 (0)