Exosomes derived from apical papilla stem cells improve NASH by regulating fatty acid metabolism and reducing inflammation

Albhaisi S, Noureddin M. Current and potential therapies targeting inflammation in NASH. Front Endocrinol. 2021;12: 767314. https://doi.org/10.3389/fendo.2021.767314.

Article  Google Scholar 

Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal. 2020;76: 109807. https://doi.org/10.1016/j.cellsig.2020.109807.

Article  PubMed  CAS  Google Scholar 

Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: role of cardiac redox signaling. Free Radical Biol Med. 2021;166:33–52. https://doi.org/10.1016/j.freeradbiomed.2021.02.012.

Article  CAS  Google Scholar 

Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P, Geurtsen W, Tsiftsoglou A. Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev. 2015;24(21):2496–512. https://doi.org/10.1089/scd.2015.0197.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD—more than inflammation. Nat Rev Endocrinol. 2022;18(8):461–72. https://doi.org/10.1038/s41574-022-00675-6.

Article  PubMed  CAS  Google Scholar 

Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radical Biol Med. 2022;188:221–61. https://doi.org/10.1016/j.freeradbiomed.2022.06.226.

Article  CAS  Google Scholar 

Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen signals through peroxisome proliferator-activated receptor-γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology. 2017;152(1):243–56. https://doi.org/10.1053/j.gastro.2016.09.017.

Article  PubMed  CAS  Google Scholar 

Boeckmans J, Natale A, Rombaut M, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Anti-NASH drug development hitches a lift on PPAR agonism. Cells. 2019;9(1):37. https://doi.org/10.3390/cells9010037.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bruno S, Pasquino C, Herrera Sanchez MB, Tapparo M, Figliolini F, Grange C, Chiabotto G, Cedrino M, Deregibus MC, Tetta C, Camussi G. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol Ther. 2020;28(2):479–89. https://doi.org/10.1016/j.ymthe.2019.10.016.

Article  PubMed  CAS  Google Scholar 

Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling diet-induced NAFLD and NASH in rats: a comprehensive review. Biomedicines. 2021;9(4):378. https://doi.org/10.3390/biomedicines9040378.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. https://doi.org/10.1002/hep.29367.

Article  PubMed  Google Scholar 

Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol Med. 2020;152:116–41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025.

Article  CAS  Google Scholar 

Chougule A, Baroi S, Czernik PJ, Crowe E, Chang MR, Griffin PR, Lecka-Czernik B. Osteocytes contribute via nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism. Front Endocrinol. 2023;14:1145467. https://doi.org/10.3389/fendo.2023.1145467.

Article  Google Scholar 

Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021;266: 118868. https://doi.org/10.1016/j.lfs.2020.118868.

Article  PubMed  CAS  Google Scholar 

El-Derany MO, AbdelHamid SG. Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: emphasis on caspase-2 signaling inhibition. Biochem Pharmacol. 2021;190: 114624. https://doi.org/10.1016/j.bcp.2021.114624.

Article  PubMed  CAS  Google Scholar 

Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(8):484–95. https://doi.org/10.1038/s41574-021-00507-z.

Article  PubMed  PubMed Central  Google Scholar 

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. https://doi.org/10.1038/s41591-018-0104-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800. https://doi.org/10.1016/j.molcel.2017.05.032.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut. 2019;68(11):2065–79. https://doi.org/10.1136/gutjnl-2018-318146.

Article  PubMed  CAS  Google Scholar 

Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier MP, Yeoh G, Sievert W, Lim R. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther. 2021;12(1):429. https://doi.org/10.1186/s13287-021-02476-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guillot A, Tacke F. Liver macrophages: old dogmas and new insights. Hepatology Communications. 2019;3(6):730–43. https://doi.org/10.1002/hep4.1356.

Article  PubMed  PubMed Central  Google Scholar 

Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95.

Article  PubMed  CAS  Google Scholar 

Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:2582080. https://doi.org/10.1155/2017/2582080.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Ranvir R, Kadam S, Patel H, Swain P, Roy SS, Das N, Karmakar E, Wahli W, Patel PR. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38(6):1084–94. https://doi.org/10.1111/liv.13634.

Article  PubMed  CAS  Google Scholar 

Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, He Q, Hu S, Zhang T, Chen T, Song J. Dynamically bioresponsive DNA hydrogel incorporated with dual-functional stem cells from apical papilla-derived exosomes promotes diabetic bone regeneration. ACS Appl Mater Interfaces. 2022;14(14):16082–99. https://doi.org/10.1021/acsami.2c02278.

Article  PubMed  CAS  Google Scholar 

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kang Y, Song Y, Luo Y, Song J, Li C, Yang S, Guo J, Yu J, Zhang X. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radical Biol Med. 2022;192:25–36. https://doi.org/10.1016/j.freeradbiomed.2022.08.037.

Article  CAS 

留言 (0)

沒有登入
gif