Farooq, M. et al. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 118, 199–217 (2017).
Article CAS PubMed Google Scholar
Ma, L., Liu, X., Lv, W. & Yang, Y. Molecular mechanisms of plant responses to salt stress. Front. Plant Sci. 13, 934877 (2022).
Article PubMed PubMed Central Google Scholar
Isayenkov, S. V. & Maathuis, F. J. M. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 10, 80 (2019).
Article PubMed PubMed Central Google Scholar
Yang, Y. & Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 60, 796–804 (2018).
Article CAS PubMed Google Scholar
Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).
Article CAS PubMed PubMed Central Google Scholar
Liang, W., Ma, X., Wan, P. & Liu, L. Plant salt-tolerance mechanism: a review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).
Article CAS PubMed Google Scholar
Tanveera, M., Shahzada, B., Sharmac, A., Bijub, S. & Bhardwaj, R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol. Biochem. 130, 69–79 (2018).
Zhan, H. et al. Melatonin: a small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci. 20, 709 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wu, H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).
Zulfiqar, F. & Ashraf, M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268 (2021).
Article CAS PubMed Google Scholar
Per, T. S. et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 115, 126–140 (2017).
Article CAS PubMed Google Scholar
Yu, Z. et al. How plant hormones mediate salt stress responses.Trends Plant Sci. 25, 1117–1130 (2020).
Article CAS PubMed Google Scholar
Wang, C.-F. et al. Plant salinity sensors: current understanding and future directions. Front. Plant Sci. 13, 859224 (2022).
Article PubMed PubMed Central Google Scholar
Yang, Y. & Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523–539 (2017).
Sanchez, D. H. et al. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 53, 973–987 (2008).
Article CAS PubMed Google Scholar
Zeiner, M. et al. Influence of soil salinity on selected element contents in different brassica species. Molecules 27, 1878 (2022).
Article CAS PubMed PubMed Central Google Scholar
Khan, M. I. R., Asgher, M. & Khan, N. A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Biochem. 80, 67–74 (2014).
Article CAS PubMed Google Scholar
Chen, Y.-E. et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plantarum 164, 349–363 (2018).
Sehar, Z., Masood, A. & Khan, N. A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Exp. Bot. 161, 277–289 (2019).
Park, M., Lee, H., Lee, J.-S., Byun, M.-O. & Kim, B.-G. In planta measurements of Na+ using fluorescent dye CoroNa Green. J. Plant Biol. 52, 298–302 (2009).
Wu, H. et al. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front. Plant Sci. 6, 71 (2015).
Article PubMed PubMed Central Google Scholar
Cuin, T. A. et al. Assessing the role of root plasma membrane andtonoplast Na+/H+exchangers in salinity tolerancein wheat: in planta quantification methods. Plant Cell Environ. 34, 947–949 (2011).
Article CAS PubMed Google Scholar
Wu, H. et al. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta 242, 847–857 (2015).
Article CAS PubMed Google Scholar
Zhang, Y. et al. Copalyl diphosphate synthase mutation improved salt tolerance in maize (Zea mays. L) via enhancing vacuolar Na+ sequestration and maintaining ROS homeostasis. Front. Plant Sci. 11, 457 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wu, H. et al. Na+ extrusion from the cytosol and tissue-specific Na sequestration in roots confer differential salt stress tolerance between durum and bread wheat. J. Exp. Bot. 69, 3987–4001 (2018).
Article CAS PubMed PubMed Central Google Scholar
Pedersen, O., Revsbech, N. P. & Shabala, S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. J. Exp. Bot. 71, 3941–3954 (2020).
Article CAS PubMed Google Scholar
Liu, K. et al. Application of non-invasive microelectrode ion flux estimation technique in crop stress physiology. Chin. J. Appl. Ecol. 29, 678–686 (2018).
Shabala, S., Shabala, L., Bose, J., Cuin, T. & Newman, I. Ion flux measurements using the MIFE technique. Methods Mol. Bio. 953, 171–183 (2013).
Martin, V. V. & Gee, A. R. R. Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions. Bioorg. Med. Chem. Lett. 15, 1851–1855 (2005).
Article CAS PubMed Google Scholar
Yan, C. et al. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice. Nat. Protoc. 18, 1316–1336 (2023).
Article CAS PubMed Google Scholar
Yin, J. et al. Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice. Nat. Protoc. 10, 1742–1754 (2015).
Article CAS PubMed Google Scholar
Gadella, T. W. J. New near-infrared fluorescent probes and tools. Nat. Methods 19, 654–655 (2022).
Article CAS PubMed Google Scholar
Liu, Y. et al. A cyanine dye to probe mitophagy: simultaneous detection of mitochondria and autolysosomes in live cells. J. Am. Chem. Soc. 138, 12368–12374 (2016).
留言 (0)