A mouse model of volumetric muscle loss and therapeutic scaffold implantation

Grogan, B. F., Hsu, J. R. & Skeletal Trauma Research Consortium. Volumetric muscle loss. J. Am. Acad. Orthop. Surg. 19, S35–S37 (2011).

Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caldwell, C. J., Mattey, D. L. & Weller, R. O. Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol. Appl. Neurobiol. 16, 225–238 (1990).

Article  CAS  PubMed  Google Scholar 

Lefaucheur, J. P. & Sebille, A. The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul. Disord. 5, 501–509 (1995).

Article  CAS  PubMed  Google Scholar 

Aguilar, C. A. et al. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 4, 1–11 (2018).

CAS  Google Scholar 

Corona, B. T., Wenke, J. C. & Ward, C. L. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs 202, 180–188 (2016).

Article  PubMed  Google Scholar 

Greising, S. M., Dearth, C. L. & Corona, B. T. Regenerative and rehabilitative medicine: a necessary synergy for functional recovery from volumetric muscle loss injury. Cells Tissues Organs 202, 237–249 (2016).

Article  PubMed  Google Scholar 

Nakayama, K. H., Shayan, M. & Huang, N. F. Engineering biomimetic materials for skeletal muscle repair and regeneration. Adv. Healthc. Mater. 8, e1801168 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Shayan, M. & Huang, N. F. Pre-clinical cell therapeutic approaches for repair of volumetric muscle loss. Bioengineering https://doi.org/10.3390/bioengineering7030097 (2020).

Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen. Med. 1, 16008 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Nakayama, K. H. et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun. Biol. 2, 170 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Anderson, S. E. et al. Determination of a critical size threshold for volumetric muscle loss in the mouse quadriceps. Tissue Eng. Part C. Methods 25, 59–70 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garg, K. et al. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015).

Article  PubMed  Google Scholar 

Willett, N. J. et al. Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a rat model of composite bone and muscle injury. Tissue Eng. C. 19, 316–325 (2013).

Article  CAS  Google Scholar 

Hu, C. et al. Comparative effects of basic fibroblast growth factor delivery or voluntary exercise on muscle regeneration after volumetric muscle loss. Bioengineering 9, 37 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larouche, J. A., Wallace, E. C., Spence, B. D., Buras, E. & Aguilar, C. A. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight https://doi.org/10.1172/jci.insight.162835 (2023).

Corona, B. T., Henderson, B. E., Ward, C. L. & Greising, S. M. Contribution of minced muscle graft progenitor cells to muscle fiber formation after volumetric muscle loss injury in wild-type and immune deficient mice. Physiol. Rep. 5, e13249 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Pollot, B. E. & Corona, B. T. Volumetric muscle loss. Methods Mol. Biol. 1460, 19–31 (2016).

Article  PubMed  Google Scholar 

Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama, K. H. et al. Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. NPJ Regen. Med. 3, 16 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Quarta, M. et al. Biomechanics show stem cell necessity for effective treatment of volumetric muscle loss using bioengineered constructs. NPJ Regen. Med. 3, 18 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Corona, B. T. et al. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng. Part A 18, 1213–1228 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra258 (2014).

Article  Google Scholar 

Zaitseva, T. S. et al. Aligned nanofibrillar scaffolds for controlled delivery of modified mRNA. Tissue Eng. Part A 25, 121–130 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alcazar, C. A., Hu, C., Rando, T. A., Huang, N. F. & Nakayama, K. H. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater. Sci. 8, 5376–5389 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corona, B. T. et al. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761–775 (2013).

Article  CAS  PubMed  Google Scholar 

Sirabella, D., De Angelis, L. & Berghella, L. Sources for skeletal muscle repair: from satellite cells to reprogramming. J. Cachexia Sarcopenia Muscle 4, 125–136 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Wu, X., Corona, B. T., Chen, X. & Walters, T. J. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores. Open Access 1, 280–290 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sicherer, S. T., Venkatarama, R. S. & Grasman, J. M. Recent trends in injury models to study skeletal muscle regeneration and repair. Bioengineering https://doi.org/10.3390/bioengineering7030076 (2020).

Owens, B. D. et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64, 295–299 (2008).

PubMed  Google Scholar 

Merritt, E. K. et al. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng. A 16, 2871–2881 (2010).

Article  CAS  Google Scholar 

Gamba, P. G. et al. Experimental abdominal wall defect repaired with acellular matrix. Pediatr. Surg. Int. 18, 327–331 (2002).

Article  CAS  PubMed  Google Scholar 

VanDusen, K. W., Syverud, B. C., Williams, M. L., Lee, J. D. & Larkin, L. M. Engineered skeletal muscle units for repair of volumetric muscle loss in the tibialis anterior muscle of a rat. Tissue Eng. A 20, 2920–2930 (2014).

Article  CAS  Google Scholar 

Carleton, M. M., Locke, M. & Sefton, M. V. Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice. Biomaterials 275, 120909 (2021).

Article  CAS  PubMed  Google Scholar 

Dolan, C. P. et al. The impact of bilateral injuries on the pathophysiology and functional outcomes of volumetric muscle loss. NPJ Regen. Med. 7, 59 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif