Howlander, N. et al. SEER Cancer Statistics Review, 1975–2013, National Cancer Institute, Bethesda, MD. http://seer.cancer.gov/csr/1975_2013/ based on November 2015 SEER data submission, posted to the SEER web site, April 2016 (2016).
Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538–e548 (2014).
Kyle, R. A. et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 378, 241–249 (2018).
Article CAS PubMed PubMed Central Google Scholar
Landgren, O. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113, 5412–5417 (2009).
Article CAS PubMed PubMed Central Google Scholar
Kyle, R. A. et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 354, 1362–1369 (2006). This study describes a long-term median follow-up of over 34 years for patients with MGUS, establishing a progression risk of 1% per year.
Article CAS PubMed Google Scholar
Lomas, O. C. & Ghobrial, I. M. Clinical controversies in the management of smoldering multiple myeloma. Am. Soc. Clin. Oncol. Educ. Book 40, 1–6 (2020).
Salem, K. Z. & Ghobrial, I. M. The road to cure in multiple myeloma starts with smoldering disease. Exp. Opin. Orphan Drugs. 3, 653–666 (2015).
Ghobrial, I. M. & Landgren, O. How I treat smoldering multiple myeloma. Blood 124, 3380–3388 (2014).
Article CAS PubMed PubMed Central Google Scholar
Ghobrial, I. M. Revisiting treatment paradigms in high-risk smoldering multiple myeloma: out with the old, in with the new? Leuk. Lymphoma 54, 2328–2330 (2013).
Kyle, R. A. et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346, 564–569 (2002).
Mateos, M.-V. et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 10, 102 (2020). The proposed 2/20/20 risk model described in this study became the most widely used risk model for patients with SMM.
Article PubMed PubMed Central Google Scholar
Benjamin, M., Reddy, S. & Brawley, O. W. Myeloma and race: a review of the literature. Cancer Metastasis Rev. 22, 87–93 (2003).
Article CAS PubMed Google Scholar
Waxman, A. J. et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood 116, 5501–5506 (2010).
Article CAS PubMed PubMed Central Google Scholar
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
Lopez-Corral, L. et al. SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status. Leukemia 26, 2521–2529 (2012).
Article CAS PubMed Google Scholar
Bolli, N. et al. Genomic patterns of progression in smoldering multiple myeloma. Nat. Commun. 9, 3363 (2018). This study describes two modes of genomic progression to multiple myeloma: static or evolutive.
Article PubMed PubMed Central Google Scholar
Bustoros, M. et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J. Clin. Oncol. 38, 2380–2389 (2020). This study establishes that mutations in MYC and genes encoding proteins in the MAPK and DNA repair pathways predict progression to multiple myeloma.
Article CAS PubMed PubMed Central Google Scholar
Landgren, O. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: biological insights and early treatment strategies. Hematol. Educ. Progr. Am. Soc. Hematol. Am. Soc. Hematol. Educ. Progr. 2013, 478–487 (2013).
Blade, J., Dimopoulos, M., Rosinol, L., Rajkumar, S. V. & Kyle, R. A. Smoldering (asymptomatic) multiple myeloma: current diagnostic criteria, new predictors of outcome, and follow-up recommendations. J. Clin. Oncol. 28, 690–697 (2010).
Article CAS PubMed Google Scholar
Kyle, R. A. et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24, 1121–1127 (2010).
Article CAS PubMed PubMed Central Google Scholar
Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007). The findings of this study establish the importance of bone marrow plasma cell infiltration and serum monoclonal protein levels for progression risk stratification in patients with SMM.
Article CAS PubMed Google Scholar
Mailankody, S. & Landgren, O. T-cell engagers — modern immune-based therapies for multiple myeloma. N. Engl. J. Med. 387, 558–561 (2022).
Sheykhhasan, M. et al. CAR T therapies in multiple myeloma: unleashing the future. Cancer Gene Ther. 31, 667–686 (2024).
Article CAS PubMed PubMed Central Google Scholar
Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).
Article CAS PubMed Google Scholar
Maura, F. et al. Genomic classification and individualized prognosis in multiple myeloma. J. Clin. Oncol. 42, 1229–1240 (2024).
Article CAS PubMed Google Scholar
Manier, S. et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 14, 100–113 (2017).
Article CAS PubMed Google Scholar
Díaz-Tejedor, A. et al. Immune system alterations in multiple myeloma: molecular mechanisms and therapeutic strategies to reverse immunosuppression. Cancers 13, 1353 (2021).
Article PubMed PubMed Central Google Scholar
Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 12, 335–348 (2012).
Article CAS PubMed Google Scholar
González, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).
Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).
Article CAS PubMed Google Scholar
Bahlis, N. J. Darwinian evolution and tiding clones in multiple myeloma. Blood 120, 927–928 (2012).
Article CAS PubMed Google Scholar
Kawano, Y. et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 263, 160–172 (2015).
El-Khoury, H. et al. Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: a multicentre cohort study. Lancet Haematol. 9, e340–e349 (2022). In this study, the authors demonstrated in a large patient cohort that mass spectrometry measurements can detect very low concentrations of monoclonal protein, termed MGIP.
留言 (0)