Conventional chemotherapy: millions of cures, unresolved therapeutic index

Kantarjian, H. M. et al. The cure of leukemia through the optimist’s prism. Cancer 128, 240–259 (2022).

Article  PubMed  Google Scholar 

Howlader, N. et al. Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era. Cancer 123, 3326–3334 (2017).

Article  PubMed  Google Scholar 

Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Prim. 4, 29 (2018).

Article  PubMed  Google Scholar 

Sargent, D. et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 27, 872–877 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Anampa, J., Makower, D. & Sparano, J. A. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 13, 195 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Malhotra, V. & Perry, M. C. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol. Ther. 2, S2–S4 (2003).

Article  PubMed  Google Scholar 

Valeriote, F. & van Putten, L. Proliferation-dependent cytotoxicity of anticancer agents: a review. Cancer Res. 35, 2619–2630 (1975).

PubMed  Google Scholar 

Komlodi-Pasztor, E., Sackett, D., Wilkerson, J. & Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 8, 244–250 (2011).

Article  PubMed  Google Scholar 

Komlodi-Pasztor, E., Sackett, D. L. & Fojo, A. T. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin. Cancer Res. 18, 51–63 (2012).

Article  PubMed  Google Scholar 

Tubiana, M., Pejovic, M. H., Koscielny, S., Chavaudra, N. & Malaise, E. Growth rate, kinetics of tumor cell proliferation and long-term outcome in human breast cancer. Int. J. Cancer 44, 17–22 (1989).

Article  PubMed  Google Scholar 

Mitchison, T. J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell 23, 1–6 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Stryckmans, P., Debusscher, L., Ronge-Collard, E., Socquet, M. & Zittoun, R. The labelling index of marrow myeloblasts: a predictive test for relapse of acute non-lymphoblastic leukemia. Leuk. Res. 4, 79–87 (1980).

Article  PubMed  Google Scholar 

Staber, P. B. et al. Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 23, 894–904 (2004).

Article  PubMed  Google Scholar 

Alba, E. et al. High proliferation predicts pathological complete response to neoadjuvant chemotherapy in early breast cancer. Oncologist 21, 150–155 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Amadori, D. et al. Cell proliferation as a predictor of response to chemotherapy in metastatic breast cancer: a prospective study. Breast Cancer Res. Treat. 43, 7–14 (1997).

Article  PubMed  Google Scholar 

Viale, G. et al. Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J. Natl Cancer Inst. 100, 207–212 (2008).

Article  PubMed  Google Scholar 

Granada, A. E. et al. The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Mol. Biol. Cell 31, 845–857 (2020).

Article  PubMed  PubMed Central  Google Scholar 

de Azambuja, E. et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br. J. Cancer 96, 1504–1513 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Abubakar, M. et al. Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups. Breast Cancer Res. 18, 104 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Volpi, A. et al. Prognostic relevance of histological grade and its components in node-negative breast cancer patients. Mod. Pathol. 17, 1038–1044 (2004).

Article  PubMed  Google Scholar 

Siddhartha, G. & Vijay, P. R-CHOP versus R-CVP in the treatment of follicular lymphoma: a meta-analysis and critical appraisal of current literature. J. Hematol. Oncol. 2, 14 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Hallek, M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376, 1164–1174 (2010).

Article  PubMed  Google Scholar 

Chiorazzi, N. Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best. Pract. Res. Clin. Haematol. 20, 399–413 (2007).

Article  PubMed  Google Scholar 

Petrackova, A., Turcsanyi, P., Papajik, T. & Kriegova, E. Revisiting Richter transformation in the era of novel CLL agents. Blood Rev. 49, 100824 (2021).

Article  PubMed  Google Scholar 

Skipper, H. E., Schabel, F. M. Jr & Wilcox, W. S. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother. Rep. 35, 1–111 (1964).

PubMed  Google Scholar 

Makin, G. & Hickman, J. A. Apoptosis and cancer chemotherapy. Cell Tissue Res. 301, 143–152 (2000).

Article  PubMed  Google Scholar 

Brunelle, J. K. & Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 122, 437–441 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).

Article  PubMed  Google Scholar 

Ryan, J. A., Brunelle, J. K. & Letai, A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+CD8+ thymocytes. Proc. Natl Acad. Sci. USA 107, 12895–12900 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Ni et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

Article  Google Scholar 

Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

Article  PubMed  PubMed Central  Google Scholar 

Koss, B. et al. Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 7, 11500–11511 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Pourzia, A. L. et al. Quantifying requirements for mitochondrial apoptosis in CAR T killing of cancer cells. Cell Death Dis. 14, 267 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Davids, M. S. et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120, 3501–3509 (2012).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif