Kantarjian, H. M. et al. The cure of leukemia through the optimist’s prism. Cancer 128, 240–259 (2022).
Howlader, N. et al. Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era. Cancer 123, 3326–3334 (2017).
Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Prim. 4, 29 (2018).
Sargent, D. et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 27, 872–877 (2009).
Article PubMed PubMed Central Google Scholar
Anampa, J., Makower, D. & Sparano, J. A. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 13, 195 (2015).
Article PubMed PubMed Central Google Scholar
Malhotra, V. & Perry, M. C. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol. Ther. 2, S2–S4 (2003).
Valeriote, F. & van Putten, L. Proliferation-dependent cytotoxicity of anticancer agents: a review. Cancer Res. 35, 2619–2630 (1975).
Komlodi-Pasztor, E., Sackett, D., Wilkerson, J. & Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 8, 244–250 (2011).
Komlodi-Pasztor, E., Sackett, D. L. & Fojo, A. T. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin. Cancer Res. 18, 51–63 (2012).
Tubiana, M., Pejovic, M. H., Koscielny, S., Chavaudra, N. & Malaise, E. Growth rate, kinetics of tumor cell proliferation and long-term outcome in human breast cancer. Int. J. Cancer 44, 17–22 (1989).
Mitchison, T. J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell 23, 1–6 (2012).
Article PubMed PubMed Central Google Scholar
Stryckmans, P., Debusscher, L., Ronge-Collard, E., Socquet, M. & Zittoun, R. The labelling index of marrow myeloblasts: a predictive test for relapse of acute non-lymphoblastic leukemia. Leuk. Res. 4, 79–87 (1980).
Staber, P. B. et al. Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 23, 894–904 (2004).
Alba, E. et al. High proliferation predicts pathological complete response to neoadjuvant chemotherapy in early breast cancer. Oncologist 21, 150–155 (2016).
Article PubMed PubMed Central Google Scholar
Amadori, D. et al. Cell proliferation as a predictor of response to chemotherapy in metastatic breast cancer: a prospective study. Breast Cancer Res. Treat. 43, 7–14 (1997).
Viale, G. et al. Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J. Natl Cancer Inst. 100, 207–212 (2008).
Granada, A. E. et al. The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Mol. Biol. Cell 31, 845–857 (2020).
Article PubMed PubMed Central Google Scholar
de Azambuja, E. et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br. J. Cancer 96, 1504–1513 (2007).
Article PubMed PubMed Central Google Scholar
Abubakar, M. et al. Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups. Breast Cancer Res. 18, 104 (2016).
Article PubMed PubMed Central Google Scholar
Volpi, A. et al. Prognostic relevance of histological grade and its components in node-negative breast cancer patients. Mod. Pathol. 17, 1038–1044 (2004).
Siddhartha, G. & Vijay, P. R-CHOP versus R-CVP in the treatment of follicular lymphoma: a meta-analysis and critical appraisal of current literature. J. Hematol. Oncol. 2, 14 (2009).
Article PubMed PubMed Central Google Scholar
Hallek, M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376, 1164–1174 (2010).
Chiorazzi, N. Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best. Pract. Res. Clin. Haematol. 20, 399–413 (2007).
Petrackova, A., Turcsanyi, P., Papajik, T. & Kriegova, E. Revisiting Richter transformation in the era of novel CLL agents. Blood Rev. 49, 100824 (2021).
Skipper, H. E., Schabel, F. M. Jr & Wilcox, W. S. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother. Rep. 35, 1–111 (1964).
Makin, G. & Hickman, J. A. Apoptosis and cancer chemotherapy. Cell Tissue Res. 301, 143–152 (2000).
Brunelle, J. K. & Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 122, 437–441 (2009).
Article PubMed PubMed Central Google Scholar
Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).
Ryan, J. A., Brunelle, J. K. & Letai, A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+CD8+ thymocytes. Proc. Natl Acad. Sci. USA 107, 12895–12900 (2010).
Article PubMed PubMed Central Google Scholar
Ni et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).
Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).
Article PubMed PubMed Central Google Scholar
Koss, B. et al. Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 7, 11500–11511 (2016).
Article PubMed PubMed Central Google Scholar
Pourzia, A. L. et al. Quantifying requirements for mitochondrial apoptosis in CAR T killing of cancer cells. Cell Death Dis. 14, 267 (2023).
Article PubMed PubMed Central Google Scholar
Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).
Article PubMed PubMed Central Google Scholar
Davids, M. S. et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120, 3501–3509 (2012).
留言 (0)