Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).
Article CAS PubMed PubMed Central Google Scholar
Taylor, A. M. R. et al. Chromosome instability syndromes. Nat. Rev. Dis. Primers 5, 64 (2019).
Article PubMed PubMed Central Google Scholar
Baker, T. M., Waise, S., Tarabichi, M. & Van Loo, P. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat. Cancer 5, 228–239 (2024).
Article CAS PubMed PubMed Central Google Scholar
Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).
Article CAS PubMed PubMed Central Google Scholar
Stephens, P. J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study describes the existence of chromothripsis.
Article CAS PubMed PubMed Central Google Scholar
Rausch, T. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This study highlights the link between chromothripsis and impaired function of p53.
Article CAS PubMed PubMed Central Google Scholar
Voronina, N. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320 (2020).
Article CAS PubMed PubMed Central Google Scholar
Molenaar, J. J. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).
Article CAS PubMed Google Scholar
Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).
Article CAS PubMed Google Scholar
Lin, Y.-F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).
Article CAS PubMed PubMed Central Google Scholar
Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). Together with Voronina (2020), this pan-cancer study reveals the high prevalence of chromothripsis across multiple adult cancer types.
Article CAS PubMed PubMed Central Google Scholar
Shoshani, O. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This work shows that chromothripsis is a major driver of circular ecDNA amplification.
Article CAS PubMed Google Scholar
Kloosterman, W. P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).
Article CAS PubMed PubMed Central Google Scholar
Bolkestein, M. Chromothripsis in human breast cancer. Cancer Res. 80, 4918–4931 (2020).
Article CAS PubMed Google Scholar
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
Article CAS PubMed PubMed Central Google Scholar
Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013). This work describes rigorous criteria to define and detect chromothripsis from genome sequencing.
Article CAS PubMed Google Scholar
Kloosterman, W. P. & Cuppen, E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 25, 341–348 (2013).
Article CAS PubMed Google Scholar
Fukami, M. et al. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin. Genet. 91, 653–660 (2017).
Article CAS PubMed Google Scholar
Zhang, C. Z., Leibowitz, M. L. & Pellman, D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 27, 2513–2530 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
Waszak, S. M. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018).
Article CAS PubMed PubMed Central Google Scholar
Crasta, K. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).
Article CAS PubMed PubMed Central Google Scholar
Thompson, S. L. & Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors. Proc. Natl Acad. Sci. USA 108, 17974–17978 (2011).
Article CAS PubMed PubMed Central Google Scholar
Zhang, C.-Z. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ly, P. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Obstet. Gynecol. Surv. 72, 282–283 (2017).
Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).
Article CAS PubMed PubMed Central Google Scholar
Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).
Article CAS PubMed PubMed Central Google Scholar
Maciejowski, J. et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52, 884–890 (2020).
留言 (0)