Chromothripsis in cancer

Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, A. M. R. et al. Chromosome instability syndromes. Nat. Rev. Dis. Primers 5, 64 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Baker, T. M., Waise, S., Tarabichi, M. & Van Loo, P. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat. Cancer 5, 228–239 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephens, P. J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study describes the existence of chromothripsis.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rausch, T. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This study highlights the link between chromothripsis and impaired function of p53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voronina, N. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molenaar, J. J. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

Article  CAS  PubMed  Google Scholar 

Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

Article  CAS  PubMed  Google Scholar 

Lin, Y.-F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). Together with Voronina (2020), this pan-cancer study reveals the high prevalence of chromothripsis across multiple adult cancer types.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shoshani, O. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This work shows that chromothripsis is a major driver of circular ecDNA amplification.

Article  CAS  PubMed  Google Scholar 

Kloosterman, W. P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolkestein, M. Chromothripsis in human breast cancer. Cancer Res. 80, 4918–4931 (2020).

Article  CAS  PubMed  Google Scholar 

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

Article  CAS  Google Scholar 

Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013). This work describes rigorous criteria to define and detect chromothripsis from genome sequencing.

Article  CAS  PubMed  Google Scholar 

Kloosterman, W. P. & Cuppen, E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 25, 341–348 (2013).

Article  CAS  PubMed  Google Scholar 

Fukami, M. et al. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin. Genet. 91, 653–660 (2017).

Article  CAS  PubMed  Google Scholar 

Zhang, C. Z., Leibowitz, M. L. & Pellman, D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 27, 2513–2530 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

Article  PubMed  Google Scholar 

Waszak, S. M. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crasta, K. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson, S. L. & Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors. Proc. Natl Acad. Sci. USA 108, 17974–17978 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, C.-Z. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ly, P. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Obstet. Gynecol. Surv. 72, 282–283 (2017).

Article  Google Scholar 

Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maciejowski, J. et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52, 884–890 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif