Easy and accurate protein structure prediction using ColabFold

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek, M. et al. Efficient and accurate prediction of protein structure using RoseTTAFold2. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542179 (2023).

Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).

Google Scholar 

Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

Peng, Z., Wang, W., Han, R., Zhang, F. & Yang, J. Protein structure prediction in the deep learning era. Curr. Opin. Struct. Biol. 77, 102495 (2022).

Article  CAS  PubMed  Google Scholar 

Cheng, S. et al. FastFold: Optimizing AlphaFold training and inference on GPU clusters. In Proc. 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming 417–430 (ACM, 2024).

Fang, X. et al. A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nat. Mach. Intell. 5, 1087–1096 (2023).

Article  Google Scholar 

Ahdritz, G. et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat. Methods 21, 1514–1524 (2022).

Article  Google Scholar 

Li, Z. et al. Uni-Fold: an open-source platform for developing protein folding models beyond AlphaFold. Preprint at bioRxiv https://doi.org/10.1101/2022.08.04.502811 (2022).

Liu, S. et al. PSP: million-level protein sequence dataset for protein structure prediction. Preprint at https://arxiv.org/abs/2206.12240 (2022).

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

Article  CAS  PubMed  Google Scholar 

Lee, J.-W. et al. DeepFold: enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function. Bioinformatics 39, btad712 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

Article  CAS  PubMed  Google Scholar 

Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. et al. Petabase-scale homology search for structure prediction. Cold Spring Harb. Perspect. Biol. 16, a041465 (2024).

Article  PubMed  Google Scholar 

Abakarova, M., Marquet, C., Rera, M., Rost, B. & Laine, E. Alignment-based protein mutational landscape prediction: doing more with less. Genome Biol. Evol. 15, evad201 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

Article  CAS  PubMed  Google Scholar 

wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).

Article  Google Scholar 

Liu, J. et al. Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15. Commun. Biol. 6, 1140 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, Z., Wang, W., Wei, H., Li, X. & Yang, J. Improved protein structure prediction with trRosettaX2, AlphaFold2, and optimized MSAs in CASP15. Proteins 91, 1704–1711 (2023).

Article  CAS  PubMed  Google Scholar 

Rego, N. & Koes, D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31, 1322–1324 (2015).

Article  PubMed  Google Scholar 

Nomura, K. et al. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 621, 586–591 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Structure of human glycosylphosphatidylinositol transamidase. Nat. Struct. Mol. Biol. 29, 203–209 (2022).

Article  CAS  PubMed  Google Scholar 

Del Alamo, D., Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059 (2016).

Google Scholar 

Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. Bioinformatics 39, btad573 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wayment-Steele, H. K. et al. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625, 832–839 (2024).

Article  CAS  PubMed  Google Scholar 

Monteiro da Silva, G., Cui, J. Y., Dalgarno, D. C., Lisi, G. P. & Rubenstein, B. M. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 15, 2464 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakravarty, D. & Porter, L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 31, e4353 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saldaño, T. et al. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 38, 2742–2748 (2022).

Article  PubMed  Google Scholar 

Garibsingh, R.-A. A. et al. Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. Proc. Natl Acad. Sci. USA 118, e2104093118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).

Article 

留言 (0)

沒有登入
gif