Taifan, W., Boily, J. & Baltrusaitis, J. Surface chemistry of carbon dioxide revisited. Surf. Sci. Rep. 71, 595–671 (2016).
Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).
Article PubMed CAS Google Scholar
Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).
Article PubMed CAS Google Scholar
Bañuelos, J. L. et al. Oxide– and silicate–water interfaces and their roles in technology and the environment. Chem. Rev. 123, 6413–6544 (2023).
Geiger, F. M. Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Annu. Rev. Phys. Chem. 60, 61–83 (2009).
Article PubMed CAS Google Scholar
Covert, P. A. & Hore, D. K. Geochemical insight from nonlinear optical studies of mineral-water interfaces. Annu. Rev. Phys. Chem. 67, 233–257 (2016).
Article PubMed CAS Google Scholar
Ong, S., Zhao, X. & Eisenthal, K. B. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191, 327–335 (1992).
Du, Q., Freysz, E. & Shen, Y. R. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett. 72, 238–241 (1994).
Article PubMed CAS Google Scholar
Rimola, A., Costa, D., Sodupe, M., Lambert, J. & Ugliengo, P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113, 4216–4313 (2012).
Kubicki, J. D. Molecular Modeling of Geochemical Reactions: An Introduction (Wiley, 2016).
Backus, E. H. G., Schaefer, J. & Bonn, M. Probing the mineral–water interface with nonlinear optical spectroscopy. Angew. Chem. Int. Ed. 60, 10482–10501 (2020).
Ostroverkhov, V., Waychunas, G. A. & Shen, Y. R. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett. 94, 046102 (2005).
McGuire, J. A. & Shen, Y. R. Ultrafast vibrational dynamics at water interfaces. Science 313, 1945–1948 (2006).
Article PubMed CAS Google Scholar
Lis, D., Backus, E. H. G., Hunger, J., Parekh, S. H. & Bonn, M. Liquid flow along a solid surface reversibly alters interfacial chemistry. Science 344, 1138–1142 (2014).
Article PubMed CAS Google Scholar
Liu, W. & Shen, Y. R. Surface vibrational modes of alpha-quartz(0001) probed by sum-frequency spectroscopy. Phys. Rev. Lett. 101, 016101 (2008).
Tong, Y. et al. Optically probing Al–O and O–H vibrations to characterize water adsorption and surface reconstruction on alpha-alumina: an experimental and theoretical study. J. Chem. Phys. 142, 054704 (2015).
Cao, Y. et al. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy. Sci. Adv. 2, e1601162 (2016).
Article PubMed PubMed Central Google Scholar
Leung, K., Nielsen, I. M. B. & Criscenti, L. J. Elucidating the bimodal acid-base behavior of the water–silica interface from first principles. J. Am. Chem. Soc. 131, 18358–18365 (2009).
Article PubMed CAS Google Scholar
Flores, S. C., Kherb, J., Konelick, N., Chen, X. & Cremer, P. S. The effects of Hofmeister cations at negatively charged hydrophilic surfaces. J. Phys. Chem. C 116, 5730–5734 (2012).
Pfeiffer-Laplaud, M., Costa, D., Tielens, F., Gaigeot, M. & Sulpizi, M. Bimodal acidity at the amorphous silica/water interface. J. Phys. Chem. C 119, 27354–27362 (2015).
Dalstein, L., Potapova, E. & Tyrode, E. The elusive silica/water interface: isolated silanols under water as revealed by vibrational sum frequency spectroscopy. Phys. Chem. Chem. Phys. 19, 10343–10349 (2017).
Article PubMed CAS Google Scholar
Cyran, J. D. et al. Molecular hydrophobicity at a macroscopically hydrophilic surface. Proc. Natl Acad. Sci. USA 116, 1520–1525 (2019).
Article PubMed PubMed Central CAS Google Scholar
Tuladhar, A. et al. Ions tune interfacial water structure and modulate hydrophobic interactions at silica surfaces. J. Am. Chem. Soc. 142, 6991–7000 (2020).
Article PubMed CAS Google Scholar
Wang, H., Hu, X. & Wang, H. Charge-induced χ(3) susceptibility in interfacial nonlinear optical spectroscopy beyond the bulk aqueous contributions: the case for silica/water interface. J. Phys. Chem. C 125, 26208–26215 (2021).
Rehl, B. et al. Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. J. Am. Chem. Soc. 144, 16338–16349 (2022).
Article PubMed CAS Google Scholar
Wei, F., Urashima, S., Nihonyanagi, S. & Tahara, T. Elucidation of the pH-dependent electric double layer structure at the silica/water interface using heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 145, 8833–8846 (2023).
Article PubMed PubMed Central CAS Google Scholar
Shi, H., Zhang, Y., Wang, H. & Liu, W. Matrix formalism for radiating polarization sheets in multilayer structures of arbitrary composition. Chin. Opt. Lett. 15, 081901 (2017).
Lagström, T., Gmür, T. A., Quaroni, L., Goel, A. & Brown, M. A. Surface vibrational structure of colloidal silica and its direct correlation with surface charge density. Langmuir 31, 3621–3626 (2015).
Warring, S. L., Beattie, D. A. & McQuillan, A. J. Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy. Langmuir 32, 1568–1576 (2016).
Article PubMed CAS Google Scholar
Shi, Y., Ye, M., Du, L. & Weng, Y. Experimental determination of particle size-dependent surface charge density for silica nanospheres. J. Phys. Chem. C 122, 23764–23771 (2018).
Ugliengo, P. et al. Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv. Mater. 20, 4579–4583 (2008).
Sprik, M. Computation of the pK of liquid water using coordination constraints. Chem. Phys. 258, 139–150 (2000).
Macias-Romero, C., Nahalka, I., Okur, H. I. & Roke, S. Optical imaging of surface chemistry and dynamics in confinement. Science 357, 784–788 (2017).
Article PubMed CAS Google Scholar
Stebbins, J. F. NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure. Nature 351, 638–639 (1991).
Farnan, I. & Stebbins, J. F. The nature of the glass transition in a silica-rich oxide melt. Science 265, 1206–1209 (1994).
留言 (0)