Potential role of calcium sulfate/β-tricalcium phosphate/graphene oxide nanocomposite for bone graft application_mechanical and biological analyses

Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol. 2018;6.

Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C-Mater Biol Appl. 2021;130:112466.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9.

Article  PubMed  PubMed Central  Google Scholar 

Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J. 2013;95–B(5):583–97.

Cheng K, Zhu W, Weng X, Zhang L, Liu Y, Han C, et al. Injectable tricalcium phosphate/calcium sulfate granule enhances bone repair by reversible setting reaction. Biochem Biophys Res Commun. 2021;557:151–8.

Article  CAS  PubMed  Google Scholar 

Barone AW, Andreana S, Dziak R. Current use of calcium sulfate bone grafts. Med Res Arch. 2020;8(11).

Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8(4):1401–21.

Article  CAS  PubMed  Google Scholar 

Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4.

Article  PubMed  PubMed Central  Google Scholar 

Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.

Article  PubMed  PubMed Central  Google Scholar 

Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003(406):228–36.

Hsu PY, Kuo HC, Syu ML, Tuan WH, Lai PL. A head-to-head comparison of the degradation rate of resorbable bioceramics. Materials science & engineering C, Materials for biological applications. 2020;106:110175.

Liu B, Lun DX. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139–44.

Article  PubMed  PubMed Central  Google Scholar 

Pecora G, Andreana S, Margarone JE 3rd, Covani U, Sottosanti JS. Bone regeneration with a calcium sulfate barrier. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(4):424–9.

Gao C, Liu H, Luo ZP, Sajilafu, Yang H, Yang L. Modification of calcium phosphate cement with poly (γ-glutamic acid) and its strontium salt for kyphoplasty application. Mater Sci Eng C-Mater Biol Appl. 2017;80:352–61.

Article  CAS  PubMed  Google Scholar 

Fan Y, Zhang G, Li Y. Study on graphene oxide reinforced magnesium phosphate cement composites. Constr Build Mater. 2022;359:129523.

Article  CAS  Google Scholar 

Motiee ES, Karbasi S, Bidram E, Sheikholeslam M. Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2023;247:125593.

Article  CAS  PubMed  Google Scholar 

Wu C, Xia L, Han P, Xu M, Fang B, Wang J, et al. Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon. 2015;93:116–29.

Article  CAS  Google Scholar 

Chen GY, Pang DW, Hwang SM, Tuan HY, Hu YC. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials. 2012;33(2):418–27.

Article  PubMed  Google Scholar 

Wang Y, Wu Y, Zhang Y, Li X, Min L, Cao Q, et al. Graphene oxide coated three-dimensional printed biphasic calcium phosphate scaffold for angiogenic and osteogenic synergy in repairing critical-size bone defect. J Mater Sci Technol. 2023;145:25–39.

Article  CAS  Google Scholar 

Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6(1):8.

Article  PubMed  Google Scholar 

Cheng X, Wan Q, Pei X. Graphene family materials in bone tissue regeneration: perspectives and challenges. Nanoscale Res Lett. 2018;13(1):289–309.

Article  PubMed  PubMed Central  Google Scholar 

Chang TK, Lu YC, Yeh ST, Lin TC, Huang CH, Huang CH. In vitro and in vivo biological responses to graphene and graphene oxide: a murine calvarial animal study. Int J Nanomed. 2020;15:647–59.

Article  CAS  Google Scholar 

Vasile E, Pandele AM, Andronescu C, Selaru A, Dinescu S, Costache M, et al. Hema-functionalized graphene oxide: a versatile nanofiller for poly(propylene fumarate)-based hybrid materials. Sci Rep. 2019;9(1):18685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marrella A, Tedeschi G, Giannoni P, Lagazzo A, Sbrana F, Barberis F, et al. Green-reduced graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. Mater Sci Eng C-Mater Biol Appl. 2018;93:1044–53.

Article  CAS  PubMed  Google Scholar 

Lee H, Yoo JM, Ponnusamy NK, Nam SY. 3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: optimized fabrication and mechanical characterization. Ceram Int. 2022;48(7):10155–63.

Article  CAS  Google Scholar 

Deepachitra R, Nigam R, Purohit SD, Kumar BS, Hemalatha T, Sastry TP. In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting. Mater Manuf Process. 2015;30(6):804–11.

Article  CAS  Google Scholar 

Hakimi F, Abroon M, Sadighian S, Ramazani A. Evaluation of bone-like apatite biomineralization on biomimetic graphene oxide/hydroxyapatite nanocomposite. Inorg Chem Commun. 2023;149:110450.

Article  CAS  Google Scholar 

Sivashankari PR, Prabaharan M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int J Biol Macromol. 2020;146:222–31.

Article  CAS  PubMed  Google Scholar 

Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol. 2017;104(Pt B):1975–85.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Chen J, Zou L, Xu G, Geng Y. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem Eng J. 2019;378:122174.

Article  CAS  Google Scholar 

Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol. 2019;133:592–602.

Article  CAS  PubMed  Google Scholar 

Purohit SD, Singh H, Bhaskar R, Yadav I, Bhushan S, Gupta MK et al. Fabrication of graphene oxide and nanohydroxyapatite reinforced gelatin–alginate nanocomposite scaffold for bone tissue regeneration. Front Mater. 2020;7.

Chiu YH, Chen IC, Su CY, Tsai HH, Young TH, Fang HW. Development of injectable calcium sulfate and self-setting calcium phosphate composite bone graft materials for minimally invasive surgery. Int J Mol Sci. 2022;23(14).

Urban RM, Turner TM, Hall DJ, Infanger SI, Cheema N, Lim TH, et al. An injectable calcium sulfate-based bone graft putty using hydroxypropylmethylcellulose as the plasticizer. Orthopedics. 2004;27(1 Suppl):s155–9.

PubMed  Google Scholar 

Lopes CC, Pinheiro WA, Navarro da Rocha D, Neves JG, Correr AB, Ferreira JRM, et al. Nanocomposite powders of hydroxyapatite-graphene oxide for biological applications. Ceram Int. 2021;47(6):7653–65.

Article  CAS  Google Scholar 

Wang G, Yang J, Park J, Gou X, Wang B, Liu H, et al. Facile synthesis and characterization of Graphene Nanosheets. J Phys Chem C. 2008;112(22):8192–5.

Article  CAS  Google Scholar 

ISO 10993-12. :2021. Biological evaluation of medical devices part 12: sample preparation and reference materials. ISO Central Secretariat. Geneva, Switzerland: Distributed through American National Standards Institute (ANSI); 2021. p. 21.

Google Scholar 

ASTM F1635-16. Standard test method for in vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. Washington, DC: ASTM International; 2016. p. 7.

Google Scholar 

Liu J, Li J, Ye J, He F. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement. Ceram Int. 2016;42(12):13670–81.

Article  CAS  Google Scholar 

Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918–29.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif