Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kalluri, R. & McAndrews, K. M. The role of extracellular vesicles in cancer. Cell 186, 1610–1626 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Investig. 131, e147276 (2021).
Article CAS PubMed PubMed Central Google Scholar
Francis, N. & Borniger, J. C. Cancer as a homeostatic challenge: the role of the hypothalamus. Trends Neurosci. 44, 903–914 (2021).
Article CAS PubMed PubMed Central Google Scholar
Borniger, J. C. et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. 28, 118–129.e5 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hedrick, C. C. & Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22, 173–187 (2021).
Canonico, M. E. et al. Venous thromboembolism and cancer: a comprehensive review from pathophysiology to novel treatment. Biomolecules 12, 259 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hisada, Y. & Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 130, 1499–1506 (2017).
Article CAS PubMed PubMed Central Google Scholar
Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).
Article CAS PubMed Google Scholar
Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005). Along with Hiratsuka et al. (ref. 10), this pioneering study demonstrates the ability of cancer cells to create a hospitable environment at distant sites prior to tumour-cell dissemination.
Article CAS PubMed PubMed Central Google Scholar
Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).
Article CAS PubMed Google Scholar
Patras, L., Shaashua, L., Matei, I. & Lyden, D. Immune determinants of the pre-metastatic niche. Cancer Cell 41, 546–572 (2023).
Article CAS PubMed PubMed Central Google Scholar
Boire, A. et al. Why do patients with cancer die? Nat. Rev. Cancer 24, 578–589 (2024).
Article CAS PubMed PubMed Central Google Scholar
Crist, S. B. & Ghajar, C. M. When a house is not a home: a survey of antimetastatic niches and potential mechanisms of disseminated tumor cell suppression. Annu. Rev. Pathol. Mech. Dis. 16, 409–432 (2021).
de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).
Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).
Article CAS PubMed Google Scholar
Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2011).
Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).
Article CAS PubMed PubMed Central Google Scholar
Patras, L., Paul, D. & Matei, I. R. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front. Oncol. 13, 1163786 (2023).
Article CAS PubMed PubMed Central Google Scholar
Deasy, S. K. & Erez, N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol. 32, 110–123 (2022).
Article CAS PubMed Google Scholar
Nielsen, S. R. et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549–560 (2016).
Article CAS PubMed PubMed Central Google Scholar
Hiratsuka, S. et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc. Natl Acad. Sci. USA 108, 3725–3730 (2011).
Article CAS PubMed PubMed Central Google Scholar
LIU, S. et al. Vascular endothelial growth factor plays a critical role in the formation of the pre-metastatic niche via prostaglandin E2. Oncol. Rep. 32, 2477–2484 (2014).
Article CAS PubMed Google Scholar
Hiratsuka, S. et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat. Commun. 4, 1853 (2013).
Seubert, B. et al. Tissue inhibitor of metalloproteinases (TIMP)‐1 creates a premetastatic niche in the liver through SDF‐1/CXCR4‐dependent neutrophil recruitment in mice. Hepatology 61, 238–248 (2015).
Article CAS PubMed Google Scholar
Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).
Article CAS PubMed PubMed Central Google Scholar
Qi, Y., Zhao, T., Li, R. & Han, M. Macrophage-secreted S100A4 supports breast cancer metastasis by remodeling the extracellular matrix in the premetastatic niche. BioMed. Res. Int. 2022, 9895504 (2022).
Article PubMed PubMed Central Google Scholar
Martin, Y. et al. Mesenchymal cancer cell–stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell Rep. 22, 2456–2469 (2015).
Ji, Q. et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun. 11, 1211 (2020).
Article CAS PubMed PubMed Central Google Scholar
Moretti, L., Stalfort, J., Barker, T. H. & Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 298, 101530 (2022).
留言 (0)