Deming, T. J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci. 32, 858–875 (2007).
Checco, J. W. et al. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl Acad. Sci. USA 112, 4552–4557 (2015).
Article PubMed PubMed Central Google Scholar
Lee, M. W. et al. Interactions between membranes and “metaphilic” polypeptide architectures with diverse side-chain populations. ACS Nano 11, 2858–2871 (2017).
Zheng, M. et al. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact. Mater. 6, 1878–1909 (2021).
Xiong, M. et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc. Natl Acad. Sci. USA 114, 12675–12680 (2017).
Article PubMed PubMed Central Google Scholar
Tan, J., Tay, J., Hedrick, J. & Yang, Y. Y. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 252, 120078 (2020).
Zhang, K. et al. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nat. Commun. 10, 4792 (2019).
Article PubMed PubMed Central Google Scholar
Mowery, B. P., Lindner, A. H., Weisblum, B., Stahl, S. S. & Gellman, S. H. Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J. Am. Chem. Soc. 131, 9735–9745 (2009).
Ding, X., Wang, A., Tong, W. & Xu, F. J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small 15, e1900999 (2019).
Salas-Ambrosio, P., Tronnet, A., Verhaeghe, P. & Bonduelle, C. Synthetic polypeptide polymers as simplified analogues of antimicrobial peptides. Biomacromolecules 22, 57–75 (2021).
Wan, Y., Liu, L., Yuan, S., Sun, J. & Li, Z. pH-responsive reptide supramolecular hydrogels with antibacterial activity. Langmuir 33, 3234–3240 (2017).
Liang, Y., Zhang, X., Yuan, Y., Bao, Y. & Xiong, M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater. Sci. 8, 6858–6866 (2020).
Hou, Y. et al. Macrocyclization of interferon-poly(α-amino acid) conjugates significantly improves the tumor retention, penetration, and antitumor efficacy. J. Am. Chem. Soc. 140, 1170–1178 (2018).
Eldred, S. E. et al. Effects of side chain configuration and backbone spacing on the gene delivery properties of lysine-derived cationic polymers. Bioconjug. Chem. 16, 694–699 (2005).
Herce, H. D. et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 9, 762–771 (2017).
Wu, X. et al. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J. Control. Release 255, 81–93 (2017).
Song, H. Q., Fan, Y., Hu, Y., Cheng, G. & Xu, F. J. Polysaccharide–peptide conjugates: a versatile material platform for biomedical applications. Adv. Funct. Mater. 31, 2005978 (2020).
Yu, S. et al. Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomater. Sci. 7, 860–866 (2019).
Zhang, K., Yan, S., Li, G., Cui, L. & Yin, J. In-situ birth of MSCs multicellular spheroids in poly(l-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials 71, 24–34 (2015).
Lee, M. R., Stahl, S. S., Gellman, S. H. & Masters, K. S. Nylon-3 copolymers that generate cell-adhesive surfaces identified by library screening. J. Am. Chem. Soc. 131, 16779–16789 (2009).
Article PubMed PubMed Central Google Scholar
Chen, Q. et al. Dual mechanism β-amino acid polymers promoting cell adhesion. Nat. Commun. 12, 562 (2021).
Article PubMed PubMed Central Google Scholar
Leuchs, H. Ueber die Glycin‐carbonsäure. Ber. Dtsch. Chem. Ges. 39, 857–861 (1906).
Song, Z. Y., Tan, Z. Z. & Cheng, J. J. Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules 52, 8521–8539 (2019).
Lu, H. et al. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem. Commun. (Camb.) 50, 139–155 (2014).
Song, Z. et al. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 46, 6570–6599 (2017).
Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed. Engl. 45, 5752–5784 (2006).
Wibowo, S. H., Sulistio, A., Wong, E. H., Blencowe, A. & Qiao, G. G. Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future. Chem. Commun. (Camb.) 50, 4971–4988 (2014).
Wu, Y. et al. Lithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides. Nat. Commun. 9, 5297 (2018).
Article PubMed PubMed Central Google Scholar
Ding, J. D. Glovebox free and rapid ring-opening polymerization of α-amino acid N-carboxyanhydrides in open-vessels. J. Funct. Polym. 32, 120–122 (2019).
Wan, X. H. & Wang, X. H. Catalytic system for superfast polypeptide synthesis under atmosphere condition. Acta Polym. Sin. 50, 99–101 (2019).
Wu, Y. et al. Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of α-amino acid N-carboxyanhydrides. Chin. J. Polym. Sci. 38, 1131–1140 (2020).
Wu, Y. et al. Peptide polymer‐doped cement acting as an effective treatment of MRSA‐infected chronic osteomyelitis. Adv. Funct. Mater. 32, 2107942 (2021).
Wu, Y. et al. An effective strategy to develop potent and selective antifungal agents from cell penetrating peptides in tackling drug-resistant invasive fungal infections. J. Med. Chem. 65, 7296–7311 (2022).
Wu, Y. et al. Host defense peptide mimicking antimicrobial amino acid polymers and beyond: design, synthesis and biomedical applications. Prog. Polym. Sci. 141, 101679 (2023).
Wu, Y. et al. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J. Mater. Chem. B 8, 9173–9196 (2020).
Liu, Y., Li, D., Ding, J. & Chen, X. Controlled synthesis of polypeptides. Chin. Chem. Lett. 31, 3001–3014 (2020).
Rasines Mazo, A. et al. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev. 49, 4737–4834 (2020).
Brulc, B., Žagar, E., Gadzinowski, M., Słomkowski, S. & Žigon, M. Homo and block copolymers of poly(β-benzyl-l-aspartate)s and poly(γ-benzyl-l-glutamate)s of different architectures. Macromol. Chem. Phys. 212, 550–562 (2011).
Yan, J., Liu, K., Li, W., Shi, H. & Zhang, A. Thermoresponsive dendronized polypeptides showing switchable recognition to catechols. Macromolecules 49, 510–517 (2016).
留言 (0)