Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors

Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

Article  CAS  PubMed  Google Scholar 

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

Article  CAS  PubMed  Google Scholar 

Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

Article  CAS  PubMed  Google Scholar 

Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuddapah, S. et al. Native chromatin preparation and Illumina/Solexa library construction. Cold Spring Harb. Protoc. 2009, pdb.prot5237 (2009).

Article  PubMed  PubMed Central  Google Scholar 

O’Neill, L. P. & Turner, B. M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003).

Article  PubMed  Google Scholar 

Kasinathan, S., Orsi, G. A., Zentner, G. E., Ahmad, K. & Henikoff, S. High-resolution mapping of transcription factor binding sites on native chromatin. Nat. Methods 11, 203–209 (2014).

Article  CAS  PubMed  Google Scholar 

Jin, H. et al. ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in. Bioinformatics 36, 1270–1272 (2020).

Article  CAS  PubMed  Google Scholar 

Polit, L. et al. CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes. BMC Bioinforma. 22, 407 (2021).

Article  CAS  Google Scholar 

Liang, K. & Keleş, S. Normalization of ChIP-seq data with control. BMC Bioinforma. 13, 199 (2012).

Article  Google Scholar 

Chen, K. et al. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell. Biol. 36, 662–667 (2015).

Article  PubMed  Google Scholar 

Orlando, D. A. et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014).

Article  CAS  PubMed  Google Scholar 

Descostes, N., Tsirigos, A. & Reinberg, D. ChIPSeqSpike: A R/Bioconductor package for ChIP-Seq data scaling according to spike-in control. Preprint at bioRxiv https://doi.org/10.1101/269118 (2018).

Blanco, E., Di Croce, L. & Aranda, S. SpikChIP: a novel computational methodology to compare multiple ChIP-seq using spike-in chromatin. NAR Genom. Bioinform. 3, lqab064 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Grzybowski, A. T., Chen, Z. & Ruthenburg, A. J. Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide. Mol. Cell 58, 886–899 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Galen, P. et al. A multiplexed system for quantitative comparisons of chromatin landscapes. Mol. Cell 61, 170–180 (2016).

Article  PubMed  Google Scholar 

Chabbert, C. D., Adjalley, S. H., Steinmetz, L. M. & Pelechano, V. Multiplexed ChIP-Seq using direct nucleosome barcoding: a tool for high-throughput chromatin analysis. Methods Mol. Biol. 1689, 177–194 (2018).

Article  CAS  PubMed  Google Scholar 

Arrigoni, L. et al. RELACS nuclei barcoding enables high-throughput ChIP-seq. Commun. Biol. 1, 214 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kumar, B. & Elsässer, S. J. Quantitative multiplexed ChIP reveals global alterations that shape promoter bivalency in ground state embryonic stem cells. Cell Rep. 28, 3274–3284.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, B. et al. Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation. Nat. Cell Biol. 24, 845–857 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weigert, R. et al. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat. Cell Biol. 25, 579–591 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao, R. et al. Distinct transcription kinetics of pluripotent cell states. Mol. Syst. Biol. 18, e10407 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stolz, P. et al. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Nucleic Acids Res. 50, 8491–8511 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter, L. D., Van Galen, P., Bernstein, B. E. & Epstein, C. B. Mint-ChIP3: a low-input ChIP-seq protocol using multiplexed chromatin and T7 amplification v1. Available at https://www.protocols.io/view/mint-chip3-a-low-input-chip-seq-protocol-using-mul-rm7vznk84vx1/v1 (2018).

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Navarro, C., Martin, M. & Elsässer, S. minute: a MINUTE-ChIP data analysis workflow. Preprint at bioRxiv https://doi.org/10.1101/2022.03.14.484318 (2022).

Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

Article  Google Scholar 

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girardot, C., Scholtalbers, J., Sauer, S., Su, S.-Y. & Furlong, E. E. M. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinforma. 17, 419 (2016).

Article  Google Scholar 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinforma. 14, 178–192 (2013).

Article  Google Scholar 

Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

Article 

留言 (0)

沒有登入
gif