RNA silencing is a key regulatory mechanism in the biocontrol fungus Clonostachys rosea-wheat interactions

Hannon GJ. RNA interference. Nature. 2002;418:244–51.

Article  CAS  PubMed  Google Scholar 

Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10:94–108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs – big players in plant-microbe interactions. Cell Host Microbe. 2019;26:173–82.

Article  CAS  PubMed  Google Scholar 

Van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci. 2010;123:1825–39.

Article  PubMed  Google Scholar 

Piombo E, Vetukuri RR, Tzelepis G, Jensen DF, Karlsson M, Dubey M. Small RNAs: a new paradigm in fungal-fungal interactions used for biocontrol. Fungal Biol Rev. 2024;48:100356.

Article  CAS  Google Scholar 

Rosa C, Kuo Y-W, Wuriyanghan H, Falk BW. RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol. 2018;56:581–610.

Article  CAS  PubMed  Google Scholar 

Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 2020;182:51–62.

Article  CAS  PubMed  Google Scholar 

Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, et al. Small RNAs in plant immunity and virulence of filamentous pathogens. Annu Rev Phytopathol. 2021;59:265–88.

Article  CAS  PubMed  Google Scholar 

Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342:118–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Weiberg A, Lin FM, Thomma BPHJ, Da HH, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2:1–10.

Article  CAS  Google Scholar 

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016;2:1–6.

Article  Google Scholar 

Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun. 2019;10:1–10.

Article  Google Scholar 

Wong-Bajracharya J, Singan VR, Monti R, Plett KL, Ng V, Grigoriev IV, et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci. 2022;119:e2103527119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saraiva RM, Czymmek KJ, Borges ÁV, Caires NP, Maffia LA. Confocal microscopy study to understand Clonostachys rosea and Botrytis cinerea interactions in tomato plants. Biocontrol Sci Technol. 2015;25:56–71.

Article  Google Scholar 

Maillard F, Andrews E, Moran M, Kennedy PG, Van Bloem SJ, Schilling JS. Stem-inhabiting fungal communities differ between intact and snapped trees after hurricane Maria in a Puerto Rican tropical dry forest. For Ecol Manage. 2020;475:118350.

Article  Google Scholar 

Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci. 2022;23:2329.

Article  PubMed  PubMed Central  Google Scholar 

Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact. 2012;25:139–50.

Article  CAS  PubMed  Google Scholar 

Lysøe E, Dees MW, Brurberg MB. A three-way transcriptomic interaction study of a biocontrol agent (Clonostachys rosea), a fungal pathogen (Helminthosporium solani), and a potato host (Solanum tuberosum). Mol Plant-Microbe Interact. 2017;30:646–55.

Article  PubMed  Google Scholar 

Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res. 2020;240:126552.

Article  PubMed  Google Scholar 

Carreras-Villaseñor N, Esquivel-Naranjo EU, Villalobos-Escobedo JM, Abreu-Goodger C, Herrera-Estrella A. The RNAi machinery regulates growth and development in the filamentous fungus Trichoderma atroviride. Mol Microbiol. 2013;89:96–112.

Article  PubMed  Google Scholar 

Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, et al. Role of Dicer-dependent RNA interference in regulating mycoparasitic interactions. Microbiol Spectr. 2021;9:e01099-e1121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Zhang F, Cui J, Chen D, Liu Z, Hou J, et al. Identification of microRNA-like RNAs from Trichoderma asperellum DQ-1 during its interaction with tomato roots using bioinformatic analysis and high-throughput sequencing. PLoS One. 2021;16:e0254808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salamon S, Żok J, Gromadzka K, Błaszczyk L. Expression patterns of miR398, miR167, and miR159 in the Interaction between bread wheat (Triticumaestivum L.) and pathogenic Fusarium culmorum and beneficial Trichoderma fungi. Pathogens. 2021;10:1461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rebolledo-Prudencio OG, Estrada-Rivera M, Dautt-Castro M, Arteaga-Vazquez MA, Arenas-Huertero C, Rosendo-Vargas MM, et al. The small RNA-mediated gene silencing machinery is required in Arabidopsis for stimulation of growth, systemic disease resistance, and suppression of the nitrile-specifier gene NSP4 by Trichoderma atroviride. Plant J. 2022;109:873–90.

Article  CAS  PubMed  Google Scholar 

Sutton JC, Liu W, Huang R, Owen-Going N. Ability of Clonostachys rosea to establish and suppress sporulation potential of Botrytis cinerea in deleafed stems of hydroponic greenhouse tomatoes. Biocontrol Sci Technol. 2002;12:413–25.

Article  Google Scholar 

Karlsson M, Durling MB, Choi J, Kosawang C, Lackner G, Tzelepis GD, et al. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol. 2015;7:465–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubey MK, Jensen DF, Karlsson M. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol. 2014;14:1–14.

Article  Google Scholar 

Dubey M, Vélëz H, Broberg M, Jensen DF, Karlsson M. LysM proteins regulate fungal development and contribute to hyphal protection and biocontrol traits in Clonostachys rosea. Front Microbiol. 2020;11:679.

Article  PubMed  PubMed Central  Google Scholar 

Tzelepis G, Dubey M, Jensen DF, Karlsson M. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology. 2015;161:1407–19.

Article  CAS  PubMed  Google Scholar 

Iqbal M, Dubey M, Mcewan K, Menzel U, Franko MA, Viketoft M, et al. Evaluation of Clonostachys rosea for control of plant-parasitic nematodes in soil and in roots of carrot and wheat. Phytopathology. 2018;108:52–9.

Article  CAS  PubMed  Google Scholar 

Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol. 2020;129:486–95.

Article  PubMed  Google Scholar 

Broberg M, Dubey M, Iqbal M, Gudmundssson M, Ihrmark K, Schroers HJ, et al. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol Appl. 2021;14:476.

Article  CAS 

留言 (0)

沒有登入
gif