Cyclic stretch enhances neutrophil extracellular trap formation

Yan J, Kloecker G, Fleming C, Bousamra M 2nd, Hansen R, Hu X, et al. Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. Oncoimmunology. 2014;3(7):e950163.

Article  PubMed  PubMed Central  Google Scholar 

Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–95.

Article  PubMed  CAS  Google Scholar 

Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371(3):531–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Butterfield TA, Best TM, Merrick MA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train. 2006;41(4):457.

PubMed  PubMed Central  Google Scholar 

Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. The FEBS J. 2017;284(11):1712–25.

Article  PubMed  CAS  Google Scholar 

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

Article  PubMed  CAS  Google Scholar 

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Neubert E, Meyer D, Rocca F, Günay G, Kwaczala-Tessmann A, Grandke J, et al. Chromatin swelling drives neutrophil extracellular trap release. Nat Commun. 2018;9(1):1–13.

Article  CAS  Google Scholar 

Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Erpenbeck L, Gruhn AL, Kudryasheva G, Günay G, Meyer D, Busse J, et al. Effect of adhesion and substrate elasticity on neutrophil extracellular trap formation. Front Immunol. 2019;10: 2320.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8(4):668–76.

Article  PubMed  CAS  Google Scholar 

Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–16.

Article  PubMed  CAS  Google Scholar 

Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768–76.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu X, Tan J, Diamond SL. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J Thromb Haemost. 2018;16(2):316–29.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abaricia JO, Shah AH, Olivares-Navarrete R. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials. 2021;271:120715.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116(6):1007–21.

Article  PubMed  CAS  Google Scholar 

Birukov KG, Bardy N, Lehoux S, Merval R, Shirinsky VP, Tedgui A. Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arterioscler Thromb Vasc Biol. 1998;18(6):922–7.

Article  PubMed  CAS  Google Scholar 

Birukov KG. Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal. 2009;11(7):1651–67.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bardy N, Merval R, Benessiano J, Samuel JL, Tedgui A. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res. 1996;79(1):70–8.

Article  PubMed  CAS  Google Scholar 

Kakisis JD, Liapis CD, Sumpio BE. Effects of cyclic strain on vascular cells. Endothelium. 2004;11(1):17–28.

Article  PubMed  CAS  Google Scholar 

Ando J, Yamamoto K. Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J. 2009;73(11):1983–92.

Article  PubMed  CAS  Google Scholar 

Hipper A, Isenberg G. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch. 2000;440(1):19–27.

Article  PubMed  CAS  Google Scholar 

Leloup A, De Moudt S, Van Hove C, Fransen P. Cyclic stretch alters vascular reactivity of mouse aortic segments. Front Physiol. 2017;8: 858.

Article  PubMed  PubMed Central  Google Scholar 

Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res. 2012;49(6):463–78.

Article  PubMed  CAS  Google Scholar 

Jufri NF, Mohamedali A, Avolio A, Baker MS. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell. 2015;7:8.

Article  PubMed  PubMed Central  Google Scholar 

Mann JM, Lam RH, Weng S, Sun Y, Fu J. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip. 2012;12(4):731–40.

Article  PubMed  CAS  Google Scholar 

Yan J, Wang WB, Fan YJ, Bao H, Li N, Yao QP, et al. Cyclic stretch induces vascular smooth muscle cells to secrete connective tissue growth factor and promote endothelial progenitor cell differentiation and angiogenesis. Front Cell Dev Biol. 2020;8: 606989.

Article  PubMed  PubMed Central  Google Scholar 

Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, et al. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J. 2008;94(4):1497–507.

Article  PubMed  CAS  Google Scholar 

Kamble H, Vadivelu R, Barton M, Boriachek K, Munaz A, Park S, et al. An electromagnetically actuated double-sided cell-stretching device for mechanobiology research. Micromachines (Basel). 2017;8(8):256.

Article  PubMed 

留言 (0)

沒有登入
gif