Drula, R., Braicu, C. & Neagoe, I.-B. Current advances in circular RNA detection and investigation methods: are we running in circles? Wiley Interdiscip. Rev. RNA 15, e1850 (2024).
Article CAS PubMed Google Scholar
Pandey, P. R. et al. Methods for analysis of circular RNAs. Wiley Interdiscip. Rev. RNA 11, e1566 (2020).
Article CAS PubMed Google Scholar
Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).
Article PubMed PubMed Central Google Scholar
Hansen, T. B., Venø, M. T., Damgaard, C. K. & Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 44, e58 (2016).
Zeng, X., Lin, W., Guo, M. & Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput. Biol. 13, e1005420 (2017).
Article PubMed PubMed Central Google Scholar
Conn, V. M. et al. SRRM4 expands the repertoire of circular RNAs by regulating microexon inclusion. Cells 9, 2488 (2020).
Article CAS PubMed PubMed Central Google Scholar
Conn, V. & Conn, S. J. SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias. RNA 25, 1202–1210 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cooper, D. A., Cortés-López, M. & Miura, P. Genome-wide circRNA profiling from RNA-seq data. Methods Mol. Biol. 1724, 27–41 (2018).
Article CAS PubMed PubMed Central Google Scholar
Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e13 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhong, S. et al. Identification of internal control genes for circular RNAs. Biotechnol. Lett. 41, 1111–1119 (2019).
Article CAS PubMed Google Scholar
Xu, T., Wu, J., Han, P., Zhao, Z. & Song, X. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genomics 18, 680 (2017).
Article PubMed PubMed Central Google Scholar
Roy, S. et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol. Cancer 21, 42 (2022).
Article CAS PubMed PubMed Central Google Scholar
Nielsen, A. F. et al. Best practice standards for circular RNA research. Nat. Methods 19, 1208–1220 (2022).
Article CAS PubMed PubMed Central Google Scholar
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).
Article CAS PubMed PubMed Central Google Scholar
Dodbele, S., Mutlu, N. & Wilusz, J. E. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep 22, e52072 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, Y. et al. Accurate identification of circRNA landscape and complexity reveals their pivotal roles in human oligodendroglia differentiation. Genome Biol. 23, 48 (2022).
Article PubMed PubMed Central Google Scholar
Conn, V. M. et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 41, 1309–1326 (2023).
Article CAS PubMed Google Scholar
Liu, D. et al. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucleic Acids Res. 52, 1387–1403 (2024).
Xiao, M.-S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pandey, P. R., Rout, P. K., Das, A., Gorospe, M. & Panda, A. C. RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA. Methods 155, 41–48 (2019).
Article CAS PubMed Google Scholar
Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).
Article PubMed PubMed Central Google Scholar
Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).
Kershaw, C. J. & O’Keefe, R. T. Splint ligation of RNA with T4 DNA ligase. Methods Mol. Biol. 941, 257–269 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hofacker, I. L. & Stadler, P. F. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22, 1172–1176 (2006).
Article CAS PubMed Google Scholar
Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).
Article PubMed PubMed Central Google Scholar
Xu, T., Song, X., Wang, Y., Fu, S. & Han, P. Genome-wide analysis of the expression of circular RNA full-length transcripts and construction of the circRNA–miRNA–mRNA network in cervical cancer. Front. Cell Dev. Biol. 8, 603516 (2020).
Article PubMed PubMed Central Google Scholar
Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat. Methods 13, 792–798 (2016).
Article CAS PubMed Google Scholar
Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011).
Article CAS PubMed PubMed Central Google Scholar
Conn, V., Liu, R., Gabryelska, M. & Conn, S. Use of synthetic circular RNA spike-ins (SynCRS) for normalization of circular RNA sequencing data. Zenodo https://zenodo.org/doi/10.5281/zenodo.10843759 (2024).
留言 (0)