Divergent synthesis of amino acid-linked O-GalNAc glycan core structures

Corfield, A. P. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta 1850, 236–252 (2015).

Article  CAS  PubMed  Google Scholar 

Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brockhausen, I., Wandall, H. H., Hagen, K. G. T. & Stanley, P. in Essentials of Glycobiology 4th edn (eds Varki A. et al.) 117–128 (Cold Spring Harbor, 2022).

Bagdonaite, I., Pallesen, E. M. H., Nielsen, M. I., Bennett, E. P. & Wandall, H. H. Mucin-type O-GalNAc glycosylation in health and disease. Adv. Exp. Med. Biol. 1325, 25–60 (2021).

Article  CAS  PubMed  Google Scholar 

Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

Article  CAS  PubMed  Google Scholar 

Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 9, 874–885 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Saez, N., Peregrina, J. M. & Corzana, F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 46, 7154–7175 (2017).

Article  CAS  PubMed  Google Scholar 

Gaidzik, N., Westerlind, U. & Kunz, H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem. Soc. Rev. 42, 4421–4442 (2013).

Article  CAS  PubMed  Google Scholar 

Borgert, A. et al. Deciphering structural elements of mucin glycoprotein recognition. ACS Chem. Biol. 7, 1031–1039 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behren, S. et al. Fucose binding motifs on mucin core glycopeptides impact bacterial lectin recognition. Angew. Chem. Int. Ed. 62, e202302437 (2023).

Article  CAS  Google Scholar 

Marcaurelle, L. A. & Bertozzi, C. R. Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology 12, 69R–77R (2002).

CAS  PubMed  Google Scholar 

Bello, C. et al. Chemoenzymatic synthesis of glycopeptides to explore the role of mucin 1 glycosylation in cell adhesion. Chembiochem 24, e202200741 (2023).

Article  CAS  PubMed  Google Scholar 

Pett, C. et al. Microarray analysis of antibodies induced with synthetic antitumor vaccines: specificity against diverse mucin core structures. Chemistry 23, 3875–3884 (2017).

Article  CAS  PubMed  Google Scholar 

Pedersen, J. W. et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128, 1860–1871 (2011).

Article  CAS  PubMed  Google Scholar 

Naito, S. et al. Generation of novel anti-MUC1 monoclonal antibodies with designed carbohydrate specificities using MUC1 glycopeptide library. ACS Omega 2, 7493–7505 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wandall, H. H. et al. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 70, 1306–1313 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takagi, J. et al. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nat. Chem. Biol. 18, 762–773 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, D. et al. O-Glycosylation induces amyloid-beta to form new fibril polymorphs vulnerable for degradation. J. Am. Chem. Soc. 143, 20216–20223 (2021).

Article  CAS  PubMed  Google Scholar 

Jank, T. et al. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nat. Commun. 6, 7807 (2015).

Article  CAS  PubMed  Google Scholar 

Halim, A. et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl Acad. Sci. USA 108, 11848–11853 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steentoft, C. et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat. Methods 8, 977–982 (2011).

Article  CAS  PubMed  Google Scholar 

Hounsell, E. F. et al. Structural analysis of the O-glycosidically linked core-region oligosaccharides of human meconium glycoproteins which express oncofoetal antigens. Eur. J. Biochem. 148, 367–377 (1985).

Article  CAS  PubMed  Google Scholar 

Jin, C. et al. Structural diversity of human gastric mucin glycans. Mol. Cell. Proteom. 16, 743–758 (2017).

Article  CAS  Google Scholar 

Kurosaka, A. et al. Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J. Biol. Chem. 258, 11594–11598 (1983).

Article  CAS  PubMed  Google Scholar 

Capon, C. et al. Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur. J. Biochem. 182, 139–152 (1989).

Article  CAS  PubMed  Google Scholar 

Madunic, K. et al. Specific (sialyl-)Lewis core 2 O-glycans differentiate colorectal cancer from healthy colon epithelium. Theranostics 12, 4498–4512 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sumi, T. et al. Structural characterization of the trisaccharide chain from the skin mucus glycoprotein of the rainbow trout, Salmo gairdneri. Fish. Physiol. Biochem. 25, 11–17 (2001).

Article  CAS  Google Scholar 

Jin, C. et al. Atlantic salmon carries a range of novel O-glycan structures differentially localized on skin and intestinal mucins. J. Proteome Res. 14, 3239–3251 (2015).

Article  CAS  PubMed  Google Scholar 

Padra, J. T. et al. Aeromonas salmonicida growth in response to atlantic salmon mucins differs between epithelial sites, is governed by sialylated and N-acetylhexosamine-containing O-glycans, and is affected by Ca(2). Infect. Immun. 85, e00189-17 (2017).

Article  PubMed 

留言 (0)

沒有登入
gif