Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy

D. Nandi, S. Pathak, T. Verma, M. Singh, A. Chattopadhyay, S. Thakur, A. Raghavan, A. Gokhroo, Vijayamahantesh, T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J. Biosci. 45, 50 (2020). PMID: 32345776

Article  CAS  PubMed  Google Scholar 

D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12(4), 252–264 (2012). https://doi.org/10.1038/nrc3239

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.E. Rudd, A. Taylor, H. Schneider, CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229(1), 12–26 (2009). https://doi.org/10.1111/j.1600-065X.2009.00770.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.E. Keir, M.J. Butte, G.J. Freeman, A.H. Sharpe, PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008). https://doi.org/10.1146/annurev.immunol.26.021607.090331

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.M. Taube, R.A. Anders, G.D. Young, H. Xu, R. Sharma, T.L. McMiller, S. Chen, A.P. Klein, D.M. Pardoll, S.L. Topalian, L. Chen, Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4(127), 127ra37 (2012). https://doi.org/10.1126/scitranslmed.3003689

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S.K. Kashaw, A.K. Iyer, PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 561 (2017). https://doi.org/10.3389/fphar.2017.00561

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.Z. Wojtukiewicz, M.M. Rek, K. Karpowicz, M. Górska, B. Polityńska, A.M. Wojtukiewicz, M. Moniuszko, P. Radziwon, S.C. Tucker, K.V. Honn, Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 40(3), 949–982 (2021). https://doi.org/10.1007/s10555-021-09976-0

Article  PubMed  PubMed Central  Google Scholar 

P.C. Tumeh, C.L. Harview, J.H. Yearley, I.P. Shintaku, E.J. Taylor, L. Robert, B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A.N. West, M. Carmona, C. Kivork, E. Seja, G. Cherry, A.J. Gutierrez, T.R. Grogan, C. Mateus, G. Tomasic, J.A. Glaspy, R.O. Emerson, H. Robins, R.H. Pierce, D.A. Elashoff, C. Robert, A. Ribas, PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515(7528), 568–571 (2014). https://doi.org/10.1038/nature13954

Article  CAS  PubMed  PubMed Central  Google Scholar 

W. Zou, J.D. Wolchok, L. Chen, PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl Med. 8(328), 328rv4 (2016). https://doi.org/10.1126/scitranslmed.aad7118

Article  CAS  PubMed  PubMed Central  Google Scholar 

T.F. Gajewski, J. Louahed, V.G. Brichard, Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16(4), 399–403 (2010). https://doi.org/10.1097/PPO.0b013e3181eacbd8

Article  CAS  PubMed  Google Scholar 

Y. Shiravand, F. Khodadadi, S.M.A. Kashani, S.R. Hosseini-Fard, S. Hosseini, H. Sadeghirad, R. Ladwa, K. O’Byrne, A. Kulasinghe, Immune checkpoint inhibitors in Cancer Therapy. Curr. Oncol. 29(5), 3044–3060 (2022). https://doi.org/10.3390/curroncol29050247

Article  PubMed  PubMed Central  Google Scholar 

X. Wang, Z. Qiao, B. Aramini, D. Lin, X. Li, J. Fan, Potential biomarkers for immunotherapy in non-small-cell lung cancer. Cancer Metastasis Rev. 42(3), 661–675 (2023). https://doi.org/10.21037/atm-21-5999

Article  CAS  PubMed  Google Scholar 

C. Genova, C. Dellepiane, P. Carrega, S. Sommariva, G. Ferlazzo, P. Pronzato, R. Gangemi, G. Filaci, S. Coco, M. Croce, Therapeutic implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Front. Immunol. 12, 799455 (2022). https://doi.org/10.3389/fimmu.2021.799455

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Dong, R.A. Flavell, Th1 and Th2 cells. Curr. Opin. Hematol. 8(1), 47–51 (2001). https://doi.org/10.1097/00062752-200101000-00009

Article  CAS  PubMed  Google Scholar 

A. Takeuchi, T.F. Saito, Immunol, CD4 CTL, a cytotoxic subset of CD4+ T cells. Their Differ. Function. 8, 194 (2017). https://doi.org/10.3389/fimmu.2017.00194

M.J. Dobrzanski, Front Oncol. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. 2013;3:63. https://doi.org/10.3389/fonc.2013.00063

M.A. Kursunel, G. Esendagli, The untold story of IFN-γ in cancer biology. Cytokine Growth Factor. Rev. 31, 73–81 (2016). https://doi.org/10.1016/j.cytogfr.2016.07.005

Article  PubMed  Google Scholar 

A. Corthay, D.K. Skovseth, K.U. Lundin, E. Røsjø, H. Omholt, P.O. Hofgaard, G. Haraldsen, B. Bogen, Primary antitumor immune response mediated by CD4 + T cells. Immunity. 22(3), 371–383 (2005). https://doi.org/10.1016/j.immuni.2005.02.003

Article  CAS  PubMed  Google Scholar 

T. Ahrends, A. Spanjaard, B. Pilzecker, N. Bąbała, A. Bovens, Y. Xiao, H. Jacobs, J. Borst, CD4+ T cell help confers a cytotoxic T cell Effector Program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity. 47(5), 848–61e (2017). https://doi.org/10.1016/j.immuni.2017.10.009

Article  CAS  PubMed  Google Scholar 

G.Z. Tau, S.N. Cowan, J. Weisburg, N.S. Braunstein, P.B. Rothman, Regulation of IFN-gamma signaling is essential for the cytotoxic activity of CD8(+) T cells. J. Immunol. 167(10), 5574–5582 (2001). https://doi.org/10.4049/jimmunol.167.10.5574

Article  CAS  PubMed  Google Scholar 

N.R. Maimela, S. Liu, Y. Zhang, Fates of CD8 + T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 17, 1–13 (2018). https://doi.org/10.1016/j.csbj.2018.11.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Takeda, M.J. Smyth, E. Cretney, Y. Hayakawa, N. Kayagaki, H. Yagita, K. Okumura, Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195(2), 161–169 (2002). https://doi.org/10.1084/jem.20011171

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Jorgovanovic, M. Song, L. Wang, Y. Zhang, Roles of IFN-γ in tumor progression and regression: a review. Biomark. Res. 8, 49 (2020). https://doi.org/10.1186/s40364-020-00228-x

Article  PubMed  PubMed Central  Google Scholar 

H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8(8), 793–800 (2002). https://doi.org/10.1038/nm730

Article  CAS  PubMed  Google Scholar 

A.L. Mellor, D.H. Munn, Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8(1), 74–80 (2008). https://doi.org/10.1038/nri2233

Article  CAS  PubMed  Google Scholar 

A.J. Muller, M.D. Sharma, P.R. Chandler, J.B. Duhadaway, M.E. Everhart, B.A. Johnson 3rd, D.J. Kahler, J. Pihkala, A.P. Soler, D.H. Munn, G.C. Prendergast, A.L. Mellor, Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc. Natl. Acad. Sci. USA 105(44), 17073–17078 (2008). https://doi.org/10.1073/pnas.0806173105

Article  PubMed  PubMed Central  Google Scholar 

D.I. Gabrilovich, S. Ostrand-Rosenberg, V. Bronte, Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12(4), 253–268 (2012). https://doi.org/10.1038/nri3175

Article 

留言 (0)

沒有登入
gif