Circadian system disorder induced by aberrantly activated EFNB2-EPHB2 axis leads to facilitated liver metastasis in gastric cancer

H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660

Article  CAS  PubMed  Google Scholar 

L.P. Carcas, Gastric cancer review. J. Carcinog. 13, 14 (2014). https://doi.org/10.4103/1477-3163.146506

Article  PubMed  PubMed Central  Google Scholar 

P. Yang, Q.J. Li, Y. Feng, Y. Zhang, G.J. Markowitz, S. Ning, Y. Deng, J. Zhao, S. Jiang, Y. Yuan et al., TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 22(3), 291–303 (2012). https://doi.org/10.1016/j.ccr.2012.07.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Shitara, J. Ikeda, C. Kondo, D. Takahari, T. Ura, K. Muro, K. Matsuo, Reporting patient characteristics and stratification factors in randomized trials of systemic chemotherapy for advanced gastric cancer. Gastric Cancer. 15(2), 137–143 (2012). https://doi.org/10.1007/s10120-011-0083-8

Article  PubMed  Google Scholar 

C. Dibner, U. Schibler, U. Albrecht, The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010). https://doi.org/10.1146/annurev-physiol-021909-135821

Article  CAS  PubMed  Google Scholar 

R.T. Dauchy, S. Xiang, L. Mao, S. Brimer, M.A. Wren, L. Yuan, M. Anbalagan, A. Hauch, T. Frasch, B.G. Rowan et al., Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 74(15), 4099–4110 (2014). https://doi.org/10.1158/0008-5472.CAN-13-3156

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Chen, J. Zhao, Q. Tang, H. Li, C. Zhang, R. Yu, Y. Zhao, Y. Huo, C. Wu, PFKFB3 control of cancer growth by responding to circadian clock outputs. Sci. Rep. 6, 24324 (2016). https://doi.org/10.1038/srep24324

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Yu, Q. Tang, M. Xie, X. Zhou, Y. Long, Y. Xie, F. Guo, L. Chen, Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway. Cell. Prolif. 53(1), e12727 (2020). https://doi.org/10.1111/cpr.12727

Article  PubMed  Google Scholar 

M. Pariollaud, L.H. Ibrahim, E. Irizarry, R.M. Mello, A.B. Chan, B.J. Altman, R.J. Shaw, M.J. Bollong, R.L. Wiseman, K.A. Lamia, Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. Sci. Adv. 8(39), eabo1123 (2022). https://doi.org/10.1126/sciadv.abo1123

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Zhang, P. Huang, H. Dai, Q. Li, L. Hu, J. Peng, S. Jiang, Y. Xu, Z. Wu, H. Nie et al., TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in ER-positive breast cancer. Cell. Death Dis. 11(10), 892 (2020). https://doi.org/10.1038/s41419-020-03106-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.M. McQueen, E.E. Schmitt, T.R. Sarkar, J. Elswood, R.P. Metz, D. Earnest, M. Rijnkels, W.W. Porter, PER2 regulation of mammary gland development. Development. 145(6) (2018). https://doi.org/10.1242/dev.157966

T. Papagiannakopoulos, M.R. Bauer, S.M. Davidson, M. Heimann, L. Subbaraj, A. Bhutkar, J. Bartlebaugh, M.G. Vander Heiden, T. Jacks, Circadian rhythm disruption promotes Lung Tumorigenesis. Cell. Metab. 24(2), 324–331 (2016). https://doi.org/10.1016/j.cmet.2016.07.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Ribelles, A. Santonja, B. Pajares, C. Llacer, E. Alba, The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat. Rev. 40(2), 293–299 (2014). https://doi.org/10.1016/j.ctrv.2013.09.010

Article  PubMed  Google Scholar 

J. Williams, N. Yang, A. Wood, E. Zindy, Q.J. Meng, C.H. Streuli, Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment. J. Cell. Sci. 131(5) (2018). https://doi.org/10.1242/jcs.208223

D.R. Donohoe, L.B. Collins, A. Wali, R. Bigler, W. Sun, S.J. Bultman, The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell. 48(4), 612–626 (2012). https://doi.org/10.1016/j.molcel.2012.08.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

D.R. Crooks, W.M. Linehan, The Warburg effect in hominis: isotope-resolved metabolism in ccRCC. Nat. Rev. Urol. 15(12), 731–732 (2018). https://doi.org/10.1038/s41585-018-0110-1

Article  CAS  PubMed  Google Scholar 

S. Singh, L.A. Ray, P. Shahi Thakuri, S. Tran, M.C. Konopka, G.D. Luker, H. Tavana, Organotypic breast tumor model elucidates dynamic remodeling of tumor microenvironment. Biomaterials. 238, 119853 (2020). https://doi.org/10.1016/j.biomaterials.2020.119853

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Padilla, N.M. Osman, B. Bissig-Choisat, S.L. Grimm, X. Qin, A.M. Major, L. Yang, D. Lopez-Terrada, C. Coarfa, F. Li et al., Circadian dysfunction induces NAFLD-related human liver cancer in a mouse model. J. Hepatol. 80(2), 282–292 (2024). https://doi.org/10.1016/j.jhep.2023.10.018

Article  CAS  PubMed  Google Scholar 

J. Wang, Q. Huang, X. Hu, S. Zhang, Y. Jiang, G. Yao, K. Hu, X. Xu, B. Liang, Q. Wu et al., Disrupting Circadian Rhythm via the PER1-HK2 Axis reverses Trastuzumab Resistance in Gastric Cancer. Cancer Res. 82(8), 1503–1517 (2022). https://doi.org/10.1158/0008-5472.CAN-21-1820

Article  CAS  PubMed  PubMed Central  Google Scholar 

X. Liu, Y. Ma, Y. Yu, W. Zhang, J. Shi, X. Zhang, M. Dai, Y. Wang, H. Zhang, J. Zhang et al., Gut microbial methionine impacts circadian clock gene expression and reactive oxygen species level in host gastrointestinal tract. Protein Cell. 14(4), 309–313 (2023). https://doi.org/10.1093/procel/pwac021

Article  CAS  PubMed  Google Scholar 

H. Nonaka, N. Emoto, K. Ikeda, H. Fukuya, M.S. Rohman, S.B. Raharjo, K. Yagita, H. Okamura, M. Yokoyama, Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation. 104(15), 1746–1748 (2001). https://doi.org/10.1161/hc4001.098048

Article  CAS  PubMed  Google Scholar 

L. Xie, S. Qiu, C. Lu, C. Gu, J. Wang, J. Lv, L. Fang, Z. Chen, Y. Li, T. Jiang et al., Gastric cancer-derived LBP promotes liver metastasis by driving intrahepatic fibrotic pre-metastatic niche formation. J. Exp. Clin. Cancer Res. 42(1), 258 (2023). https://doi.org/10.1186/s13046-023-02833-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Xu, Y. Yang, Y. Wen, J.M. Jeong, C. Emontzpohl, C.L. Atkins, Z. Sun, K.L. Poulsen, D.R. Hall, J. Steve Bynon et al., Hepatic recruitment of eosinophils and their protective function during acute liver injury. J. Hepatol. 77(2), 344–352 (2022). https://doi.org/10.1016/j.jhep.2022.02.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Kaur, L.J. Raggatt, S.M. Millard, A.C. Wu, L. Batoon, R.N. Jacobsen, I.G. Winkler, K.P. MacDonald, A.C. Perkins, D.A. Hume et al., Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood. 132(7), 735–749 (2018). https://doi.org/10.1182/blood-2018-01-829663

Article  CAS  PubMed  Google Scholar 

Y. Liu, W. Wu, C. Cai, H. Zhang, H. Shen, Y. Han, Patient-derived xenograft models in cancer therapy: technologies and applications. Signal. Transduct. Target. Ther. 8(1), 160 (2023). https://doi.org/10.1038/s41392-023-01419-2

Article  PubMed  PubMed Central  Google Scholar 

E.R. Zanella, E. Grassi, L. Trusolino, Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 19(11), 719–732 (2022). https://doi.org/10.1038/s41571-022-00682-6

Article  PubMed  Google Scholar 

S. Aparicio, M. Hidalgo, A.L. Kung, Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer. 15(5), 311–316 (2015). https://doi.org/10.1038/nrc3944

Article 

留言 (0)

沒有登入
gif