Targeting tumor associated macrophages (TAMs) reprograms tumor immune microenvironment to promote solid tumor immunotherapy

A.V.R. Kornepati, R.K. Vadlamudi, T.J. Curiel, Programmed death ligand 1 signals in cancer cells. Nat. Rev. Cancer. 22, 174–189 (2022). https://doi.org/10.1038/s41568-021-00431-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.D. Vesely, T. Zhang, L. Chen, Resistance mechanisms to Anti-PD cancer immunotherapy. Annu. Rev. Immunol. 40, 45–74 (2022). https://doi.org/10.1146/annurev-immunol-070621-030155

Article  CAS  PubMed  Google Scholar 

Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807–821 (2020). https://doi.org/10.1038/s41423-020-0488-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Binnewies et al., Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018). https://doi.org/10.1038/s41591-018-0014-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.F. Sanmamed, L. Chen, A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 175, 313–326 (2018). https://doi.org/10.1016/j.cell.2018.09.035

Article  CAS  PubMed  PubMed Central  Google Scholar 

I.S. Kim et al., Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell. Biol. 21, 1113–1126 (2019). https://doi.org/10.1038/s41556-019-0373-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

X. Xiang, J. Wang, D. Lu, X. Xu, Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal. Transduct. Target. Ther. 6 (2021). https://doi.org/10.1038/s41392-021-00484-9

T.D. Ricketts, N. Prieto-Dominguez, P.S. Gowda, E. Ubil, Mechanisms of macrophage plasticity in the tumor environment: manipulating activation state to improve outcomes. Front. Immunol. 12, 642285 (2021). https://doi.org/10.3389/fimmu.2021.642285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z. Duan, Y. Luo, Targeting macrophages in cancer immunotherapy. Signal. Transduct. Target. Ther. 6, 127 (2021). https://doi.org/10.1038/s41392-021-00506-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Chen et al., Macrophages in immunoregulation and therapeutics. Signal. Transduct. Target. Ther. 8, 207 (2023). https://doi.org/10.1038/s41392-023-01452-1

Article  PubMed  PubMed Central  Google Scholar 

M. Li, L. He, J. Zhu, P. Zhang, S. Liang, Targeting tumor-associated macrophages for cancer treatment. Cell. Biosci. 12, 85 (2022). https://doi.org/10.1186/s13578-022-00823-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Huang et al., Sirpalpha on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47. Nat. Cancer. (2024). https://doi.org/10.1038/s43018-023-00691-z

Article  PubMed  PubMed Central  Google Scholar 

A. Veillette, J. Chen, SIRPalpha-CD47 Immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018). https://doi.org/10.1016/j.it.2017.12.005

Article  CAS  PubMed  Google Scholar 

T. Matozaki, Y. Murata, H. Okazawa, H. Ohnishi, Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell. Biol. 19, 72–80 (2009). https://doi.org/10.1016/j.tcb.2008.12.001

Article  CAS  PubMed  Google Scholar 

R. Advani et al., CD47 blockade by Hu5F9-G4 and Rituximab in Non-hodgkin’s lymphoma. N Engl. J. Med. 379, 1711–1721 (2018). https://doi.org/10.1056/NEJMoa1807315

Article  CAS  PubMed  PubMed Central  Google Scholar 

B.I. Sikic et al., First-in-Human, first-in-class phase I trial of the Anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019). https://doi.org/10.1200/JCO.18.02018

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Zhang et al., Dual targeting of CTLA-4 and CD47 on Treg cells promotes immunity against solid tumors. Sci. Transl Med. 13 (2021). https://doi.org/10.1126/scitranslmed.abg8693

S.A. Yamada-Hunter et al., Engineered CD47 protects T cells for enhanced antitumour immunity. Nature. 630, 457–465 (2024). https://doi.org/10.1038/s41586-024-07443-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Yang, Y. Xun, H. You, The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark. Res. 11, 15 (2023). https://doi.org/10.1186/s40364-023-00456-x

Article  PubMed  PubMed Central  Google Scholar 

A. Omuro, L.M. DeAngelis, Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842–1850 (2013). https://doi.org/10.1001/jama.2013.280319

Article  CAS  PubMed  Google Scholar 

Y. Mei et al., Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. Nat. Cancer. 4, 1273–1291 (2023). https://doi.org/10.1038/s43018-023-00598-9

Article  CAS  PubMed  Google Scholar 

S. Koyama et al., Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016). https://doi.org/10.1038/ncomms10501

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Cassetta, J.W. Pollard, Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018). https://doi.org/10.1038/nrd.2018.169

Article  CAS  PubMed  Google Scholar 

S. Shao, H. Miao, W. Ma, Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front. Immunol. 14, 1295684 (2023). https://doi.org/10.3389/fimmu.2023.1295684

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif