Abe H, Takeda N, Isagawa T, Semba H, Nishimura S, Morioka MS, Nakagama Y, Sato T, Soma K, Koyama K, Wake M, Katoh M, Asagiri M, Neugent ML, Kim J-W, Stockmann C, Yonezawa T, Inuzuka R, Hirota Y, Maemura K, Komuro I (2019) Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat Commun 10:2824. https://doi.org/10.1038/s41467-019-10859-w
Article CAS PubMed PubMed Central Google Scholar
Abplanalp WT, Tucker N, Dimmeler S (2022) Single-cell technologies to decipher cardiovascular diseases. Eur Heart J 43:4536–4547. https://doi.org/10.1093/eurheartj/ehac095
Article CAS PubMed PubMed Central Google Scholar
Adachi H, Fujiwara Y, Kondo T, Nishikawa T, Ogawa R, Matsumura T, Ishii N, Nagai R, Miyata K, Tabata M, Motoshima H, Furukawa N, Tsuruzoe K, Kawashima J, Takeya M, Yamashita S, Koh GY, Nagy A, Suda T, Oike Y, Araki E (2009) Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis. Biochem Biophys Res Commun 379:806–811. https://doi.org/10.1016/j.bbrc.2008.12.018
Article CAS PubMed Google Scholar
Adler M, Korem Kohanim Y, Tendler A, Mayo A, Alon U (2019) Continuum of gene-expression profiles provides spatial division of labor within a differentiated cell type. Cell Syst 8:43-52.e5. https://doi.org/10.1016/j.cels.2018.12.008
Article CAS PubMed Google Scholar
Adler M, Moriel N, Goeva A, Avraham-Davidi I, Mages S, Adams TS, Kaminski N, Macosko EZ, Regev A, Medzhitov R, Nitzan M (2022) Emergence of division of labor in tissues through cell interactions and spatial cues. BioRxiv. https://doi.org/10.1101/2022.11.16.516540
Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher C-A, Smith CL, Wirth D, June CH, Epstein JA (2019) Targeting cardiac fibrosis with engineered T cells. Nature 573:430–433. https://doi.org/10.1038/s41586-019-1546-z
Article CAS PubMed PubMed Central Google Scholar
Alex L, Russo I, Holoborodko V, Frangogiannis NG (2018) Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 315:H934–H949. https://doi.org/10.1152/ajpheart.00238.2018
Article CAS PubMed PubMed Central Google Scholar
Araki K, Suenaga A, Kusano H, Tanaka R, Hatta T, Natsume T, Fukui K (2016) Functional profiling of asymmetrically-organized human CCT/TRiC chaperonin. Biochem Biophys Res Commun 481:232–238. https://doi.org/10.1016/j.bbrc.2016.10.120
Article CAS PubMed Google Scholar
Aryal B, Price NL, Suarez Y, Fernández-Hernando C (2019) ANGPTL4 in metabolic and cardiovascular disease. Trends Mol Med 25:723–734. https://doi.org/10.1016/j.molmed.2019.05.010
Article CAS PubMed PubMed Central Google Scholar
Aryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C (2016) ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun 7:12313. https://doi.org/10.1038/ncomms12313
Article CAS PubMed PubMed Central Google Scholar
Badia-I-Mompel P, Vélez Santiago J, Braunger J, Geiss C, Dimitrov D, Müller-Dott S, Taus P, Dugourd A, Holland CH, Ramirez Flores RO, Saez-Rodriguez J (2022) decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform Adv 2:vbac016. https://doi.org/10.1093/bioadv/vbac016
Article PubMed PubMed Central Google Scholar
Boland E, Quondamatteo F, Van Agtmael T (2021) The role of basement membranes in cardiac biology and disease. Biosci Rep. https://doi.org/10.1042/BSR20204185
Brann A, Miller J, Eshraghian E, Park JJ, Greenberg B (2023) Global longitudinal strain predicts clinical outcomes in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 25:1755–1765. https://doi.org/10.1002/ejhf.2947
Browaeys R, Saelens W, Saeys Y (2020) NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 17:159–162. https://doi.org/10.1038/s41592-019-0667-5
Article CAS PubMed Google Scholar
Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, Wang AW, Yang YA, Tam L, Caothien R, Roose-Girma M, Modrusan Z, Arron JR, Bourgon R, Müller S, Turley SJ (2021) Cross-tissue organization of the fibroblast lineage. Nature 593:575–579. https://doi.org/10.1038/s41586-021-03549-5
Article CAS PubMed Google Scholar
Cassado ADA, D’Império Lima MR, Bortoluci KR (2015) Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol 6:225. https://doi.org/10.3389/fimmu.2015.00225
Article CAS PubMed PubMed Central Google Scholar
Castanza AS, Recla JM, Eby D, Thorvaldsdóttir H, Bult CJ, Mesirov JP (2023) Extending support for mouse data in the Molecular Signatures Database (MSigDB). Nat Methods 20:1619–1620. https://doi.org/10.1038/s41592-023-02014-7
Article CAS PubMed PubMed Central Google Scholar
Chaffin M, Papangeli I, Simonson B, Akkad A-D, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M, Atwa O, Ye J, Bedi KC, Nahrendorf M, Kaushik VK, Stegmann CM, Margulies KB, Tucker NR, Ellinor PT (2022) Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608:174–180. https://doi.org/10.1038/s41586-022-04817-8
Article CAS PubMed Google Scholar
Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP (2019) Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates. Adv Healthc Mater 8:e1801378. https://doi.org/10.1002/adhm.201801378
Article CAS PubMed Google Scholar
Chen X, Lin H, Xiong W, Pan J, Huang S, Xu S, He S, Lei M, Chang ACY, Zhang H (2022) p53-dependent mitochondrial compensation in heart failure with preserved ejection fraction. J Am Heart Assoc 11:e024582. https://doi.org/10.1161/JAHA.121.024582
Article PubMed PubMed Central Google Scholar
Cho DI, Kang H-J, Jeon JH, Eom GH, Cho HH, Kim MR, Cho M, Jeong H-Y, Cho HC, Hong MH, Kim YS, Ahn Y (2019) Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight 4(16):e125437. https://doi.org/10.1172/jci.insight.125437
Article PubMed PubMed Central Google Scholar
Das S, Frisk C, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, Kumar C, Asp M, Lundeberg J, Maret E, Persson H, Linde C, Persson B (2019) Transcriptomics of cardiac biopsies reveals differences in patients with or without diagnostic parameters for heart failure with preserved ejection fraction. Sci Rep 9:3179. https://doi.org/10.1038/s41598-019-39445-2
Article CAS PubMed PubMed Central Google Scholar
Del Monte-Nieto G, Fischer JW, Gorski DJ, Harvey RP, Kovacic JC (2020) Basic biology of extracellular matrix in the cardiovascular system, part 1/4: JACC focus seminar. J Am Coll Cardiol 75:2169–2188. https://doi.org/10.1016/j.jacc.2020.03.024
Article CAS PubMed PubMed Central Google Scholar
Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, Van Hout CV, Habegger L, Buckler D, Lai K-MV, Leader JB, Murray MF, Ritchie MD, Kirchner HL, Ledbetter DH, Penn J, Lopez A, Borecki IB, Overton JD, Reid JG, Shuldiner AR (2016) Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med 374:1123–1133. https://doi.org/10.1056/NEJMoa1510926
Article CAS PubMed PubMed Central Google Scholar
Dimitrov D, Türei D, Boys C, Nagai JS, Ramirez Flores RO, Kim H, Szalai B, Costa IG, Dugourd A, Valdeolivas A, Saez-Rodriguez J (2022) Comparison of resources and methods to infer cell-cell communication from single-cell RNA data. Nat Commun 13:3224. https://doi.org/10.1038/s41467-022-30755-0
留言 (0)