Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease

Wang, Z. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cargill, K. & Sims-Lucas, S. Metabolic requirements of the nephron. Pediatr. Nephrol. 35, 1–8 (2020).

Article  PubMed  Google Scholar 

Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9–31 (1986).

Article  CAS  PubMed  Google Scholar 

Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

Article  CAS  PubMed  Google Scholar 

Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

Article  CAS  PubMed  Google Scholar 

Yu, S. M. & Bonventre, J. V. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr. Opin. Nephrol. Hypertens. 29, 310–318 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

Article  CAS  PubMed  Google Scholar 

Yuan, Q., Tang, B. & Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal. Transduct. Target. Ther. 7, 182 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

Article  CAS  PubMed  Google Scholar 

Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houten, S. M. & Wanders, R. J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark, J. Z. et al. Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney Int. 95, 787–796 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, W. et al. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J. Clin. Invest. 133, e164610 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legouis, D., Faivre, A., Cippa, P. E. & de Seigneux, S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transpl. 37, 1417–1425 (2022).

Article  CAS  Google Scholar 

Onodera, T. et al. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat. Commun. 14, 6531 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyu, Z. et al. PPARγ maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 38, 178–190 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkkoetter, P. T. et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 27, 1551–1566.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 e720 (2020).

Article  CAS  PubMed  Google Scholar 

Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

Article  CAS  PubMed  Google Scholar 

Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018).

Article  CAS  PubMed  Google Scholar 

Setten, E. et al. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. Nat. Commun. 13, 6499 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

Article  CAS  PubMed  Google Scholar 

Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. 2, 52 (2015).

留言 (0)

沒有登入
gif