Amino acid metabolism in kidney health and disease

Brosnan, J. T. & Brosnan, M. E. Branched-chain amino acids: enzyme and substrate regulation1, 2, 3. J. Nutr. 136, S207–S211 (2006).

Article  Google Scholar 

Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

Article  CAS  PubMed  Google Scholar 

Lian, K. et al. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes 64, 49–59 (2014).

Article  PubMed  Google Scholar 

Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2019).

Article  CAS  PubMed  Google Scholar 

Claris-Appiani, A., Assael, B. M., Tirelli, A. S., Marra, G. & Cavanna, G. Lack of glomerular hemodynamic stimulation after infusion of branched-chain amino acids. Kidney Int. 33, 91–94 (1988).

Article  CAS  PubMed  Google Scholar 

Castellino, P., Levin, R., Shohat, J. & DeFronzo, R. A. Effect of specific amino acid groups on renal hemodynamics in humans. Am. J. Physiol. Renal Physiol. 258, F992–F997 (1990).

Article  CAS  Google Scholar 

Schrijvers, B. F., Rasch, R., Tilton, R. G. & Flyvbjerg, A. High protein-induced glomerular hypertrophy is vascular endothelial growth factor-dependent. Kidney Int. 61, 1600–1604 (2002).

Article  CAS  PubMed  Google Scholar 

Stipanuk, M. H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 150, 2494S–2505S (2020).

Article  PubMed  Google Scholar 

Li, J. et al. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Mutat. Res. Mutat. Res. 788, 108396 (2021).

Article  CAS  Google Scholar 

Stipanuk, M. H. & Ueki, I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 34, 17–32 (2011).

Article  CAS  PubMed  Google Scholar 

Chesney, R. W., Han, X. & Patters, A. B. Taurine and the renal system. J. Biomed. Sci. 17, S4 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Chesney, R. W., Gusowski, N. & Dabbagh, S. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids. J. Clin. Invest. 76, 2213–2221 (1985).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, X., Patters, A. B., Jones, D. P., Zelikovic, I. & Chesney, R. W. The taurine transporter: mechanisms of regulation. Acta Physiol. 187, 61–73 (2006).

Article  CAS  Google Scholar 

Reymond, I., Bitoun, M., Levillain, O. & Tappaz, M. Regional expression and histological localization of cysteine sulfinate decarboxylase mRNA in the rat kidney. J. Histochem. Cytochem. J. Histochem. Soc. 48, 1461–1468 (2000).

Article  CAS  Google Scholar 

Holeček, M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 14, 1987 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowry, M., Hall, D. E., Hall, M. S. & Brosnan, J. T. Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am. J. Physiol. Renal Physiol. 252, F304–F309 (1987).

Article  CAS  Google Scholar 

Lowry, M., Hall, D. E. & Brosnan, J. T. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. Renal Physiol. 250, F649–F658 (1986).

Article  CAS  Google Scholar 

Jois, M., Hall, D. E. & Brosnan, J. T. Serine synthesis by the rat kidney. N. Asp. Ren. Ammon. Metab. 63, 136–140 (1988).

CAS  Google Scholar 

Wang, W. et al. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45, 463–477 (2013).

Article  PubMed  Google Scholar 

Petrossian, T. C. & Clarke, S. G. Uncovering the human methyltransferasome. Mol. Cell. Proteom. 10, M110.000976 (2011).

Article  Google Scholar 

Pitts, R. F. & MacLeod, M. B. Synthesis of serine by the dog kidney in vivo. Am. J. Physiol. 222, 394–398 (1972).

Article  CAS  PubMed  Google Scholar 

Alves, A., Bassot, A., Bulteau, A.-L., Pirola, L. & Morio, B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11, 1356 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam, C. K. L. et al. Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J. Biol. Chem. 285, 21913–21921 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Razak, M. A., Begum, P. S., Viswanath, B. & Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid. Med. Cell. Longev. 2017, 1716701 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Meléndez-Hevia, E. & de Paz-Lugo, P. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis. J. Biosci. 33, 771–780 (2008).

Article  PubMed  Google Scholar 

Tizianello, A., Ferrari, G. D., Garibotto, G., Gurreri, G. & Robaudo, C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 65, 1162–1173 (1980).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tessari, P. et al. Phenylalanine hydroxylation across the kidney in humans rapid communication. Kidney Int. 56, 2168–2172 (1999).

CAS  PubMed  Google Scholar 

Møller, N., Meek, S., Bigelow, M., Andrews, J. & Nair, K. S. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc. Natl Acad. Sci. USA 97, 1242–1246 (2000).

Article  PubMed  PubMed Central  Google Scholar 

Boirie, Y., Albright, R., Bigelow, M. & Nair, K. S. Impairment of phenylalanine conversion to tyrosine in end-stage renal disease causing tyrosine deficiency. Kidney Int. 66, 591–596 (2004).

Article  CAS  PubMed  Google Scholar 

Kopple, J. D. Phenylalanine and tyrosine metabolism in chronic kidney failure. J. Nutr. 137, 1586S–1590S (2007).

Article  CAS  PubMed  Google Scholar 

Hsu, C.-N. & Tain, Y.-L. Developmental programming and reprogramming of hypertension and kidney disease: impact of tryptophan metabolism. Int. J. Mol. Sci. 21, 8705 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro-Portuguez, R. & Sutphin, G. L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 132, 110841 (2020).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif